
P
r
e
p
r
in
t

ReFuzz — Structure Aware Fuzzing of the Resilient File System
(ReFS)

Tobias Groß

tobias.gross@cs.fau.de

Friedrich-Alexander University

Erlangen-Nuremberg, Germany

Tobias Schleier

tobias.schleier@fau.de

Friedrich-Alexander University

Erlangen-Nuremberg, Germany

Tilo Müller

tilo.mueller@hof-university.de

University of Applied Sciences

Hof, Germany

ABSTRACT
The Resilient File System (ReFS) from Microsoft promises new fea-

tures such as increased performance and resilience compared to

the New Technology File System (NTFS). On the downside, the

ReFS drivers are growing more extensive and more complex, in-

creasing the attack surface of the Windows kernel. Attackers can

often use security-critical bugs in file system drivers to escalate

privileges by mounting a file system. In this work, we present Re-
Fuzz, a structure-aware fuzzer that uses hardware-assisted code

coverage to identify bugs in the ReFS driver. The ReFS file system

offers several challenges to fuzzing because first, while ReFS is not

documented, it exhaustively uses checksums. Second, the minimal

size of a ReFS partition is 2GB, notably decreasing the performance

of naive fuzzing approaches.

We demonstrate the effectiveness of our fuzzing approach by

finding 27 unique payloads that panic the Windows kernel when

mounting or accessing ReFS partitions. Furthermore, we find 162

unique payloads that lead to a system hang-up. Microsoft confirmed

those bugs and acknowledged ten unique issues which are security-

critical, eight of them allowing remote code execution attacks and

got assigned with a CVE number.

CCS CONCEPTS
• Security and privacy → File system security; Software secu-
rity engineering.

KEYWORDS
ReFS, File Systems, Kernel Driver Fuzzing, Structure-aware Fuzzing

ACM Reference Format:
Tobias Groß, Tobias Schleier, and Tilo Müller. 2021. ReFuzz — Structure

Aware Fuzzing of the Resilient File System (ReFS). In AsiaCCS ’22: ACM
ASIA Conference on Computer and Communications Security, May 30–June
03, 2022, Nagasaki, Japan. ACM, New York, NY, USA, 13 pages. https://doi.

org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-9999-9/18/06. . . $15.00

https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Fuzz testing is the prevalent dynamic analysis technique for finding

security bugs in software. In general, fuzzing finds actual bugs, com-

pared to static analysis, which often suffers from an extremely high

false-positive rate. Also, fuzzing is more practicable for complex

software than techniques like symbolic execution, which have to

deal with state explosion, among others.

When software is fuzzed, its input interface is tested by supply-

ing randomly mutated input until the target crashes. Fuzzing can

appear in different flavors called blackbox, greybox, and whitebox
fuzzing. With blackbox fuzzing [12], the fuzzer gets no feedback

after supplying the input except the information whether the pro-

gram crashed or not. Conversely, greybox fuzzers [3, 6, 11, 16]

monitor the execution path for a given input. That way, the fuzzer

can mutate the input more effectively to reach new regions in the

program code, ultimately increasing the code coverage.Whitebox
fuzzing [2, 19, 24] describes a class of fuzzers that can calculate the

input to reach a particular area of the target program. Symbolic exe-

cution, for example, can be donated as a whitebox fuzzing approach.

In our work, we extend an AFL-like fuzzer [11], implementing the

greybox strategy.

Software running with kernel privileges is a worthwhile target

for fuzzing since bugs in kernel code often lead to a complete system

compromise. Once an attacker can hijack the control flow of the

kernel, all security measures of modern operating systems, such

as process isolation and user rights, are undermined, leading to

privilege escalation attacks. Especially drivers are a perfect target for
fuzzing as they often read data from outside the kernel, potentially

being under attackers’ control. Such device drivers are, for example,

Ethernet and USB, but also file system drivers run in kernel mode

for performance reasons and thus, constitute a perfect target for

fuzzing.

Modern file systems like Apple File System (APFS), B-tree FS

(Btrfs) [17], and ReFS become more and more complex while imple-

menting new features for reliability and effectiveness. Modern file

systems are organized in data structures like B-trees and implement

new features like copy-on-write [7, 13, 17]. This complexity leads

to a significant code base that cannot be bug-free in general. For

example, failures when parsing data structure and allocating or

de-allocating memory often lead to bugs that can be exploited. New

features like checksums hamper the exploitation of code indeed,

but eventually cannot prevent it.

We present ReFuzz [rIf2z], the first fuzzing framework target-

ing ReFS, a new file system from Microsoft. Three difficulties led

us to implement a structure-aware fuzzer using hardware-assisted

coverage guidance: (1) ReFS heavily uses checksums that must be re-

calculated to match mutated data. Since ReFS stays undocumented

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

P
r
e
p
r
in
t

ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan Tobias Groß, Tobias Schleier, and Tilo Müller

by Microsoft, this step was preceded by extensive reverse engineer-

ing. (2) The smallest size of a ReFS partition is 2GB, so we focus on

mutating metadata. Furthermore (3), the proprietary ReFS driver

cannot be instrumented effectively without hardware assistance

due to security measures like Windows PatchGuard [20].

1.1 Threat Model
In our scenario, we assume that an attacker has access to a victim’s

Windows machine and can mount a custom-crafted Virtual Hard

Disk (VHD) image. Today, only some versions of Windows, like

Windows Server and Windows Enterprise, can create ReFS parti-

tions. However, allWindows 10 versions, includingWindowsHome,

can mount ReFS VHD images, making the found bugs broadly ap-

plicable.

Some of the bugs we found were acknowledged by Microsoft

as critical, even enabling code execution. Consequently, mounting

a crafted ReFS image can be used by attackers to escalate their

privileges, e.g., to get administrator rights on a target machine.

Either an attacker tricks the victim directly into mounting such a

crafted ReFS image, or bugs in ReFS are used to escalate privileges

in a two-stage approach where another piece of malicious software

runs on the machine, e.g., an EXE file downloaded from the Internet.

Also, bugs in ReFS can be used by insider attacks in multi-user

environments, where attackers have user rights on a machine but

want to gain superuser privileges to spy on the private data of other

user accounts.

1.2 Related Work
Schumilo et al. [18] presented kernel-AFL (kAFL), a fuzzer targeting

OS kernels and drivers based on the famous American Fuzzy Lop

(AFL) fuzzing engine. kAFL uses the Intel PT technology to extract

code coverage information without instrumenting the target kernel

at runtime. We used kAFL as the basis for our implementation and

enhanced it in multiple ways, e.g., by adding a ReFS-specific input

generator and a second input dimension.

Xu et al. [23] were the first who proposed a fuzzing technique

that uses input mutations of two dimensions. In the first dimension,

the fuzzer mutates the file system data. In the second dimension, if

the mutation of FS data generates no more new paths, the fuzzer

mutates the system calls interacting with the target file system.

They used a framework called LibOS, which allows running kernel

code in user mode. As a drawback, this is only possible if the source

code of a targeted kernel component is available, which is not the

case for ReFS. Nevertheless, we adapted the idea of a second fuzzing

dimension in our work.

Aschermann et al. [1] enhanced kAFL with a so-called input-

to-state engine which can speed up the generation of semi-valid

inputs tremendously. This engine called Redqeen can find fixed

magic bytes and checksummed data in the input. The engine can

automatically calculate the checksums correctly by instrumenting

the code and extracting the values the target program expects. In

contrast to ReFuzz, Aschermann et al. do not mind the problem

of significant large inputs. Also, in the current implementation,

Redqeen can only fuzz Linux software.

Xu et al. [22] developed a fuzzing framework to detect bugs

triggered by data races in file system drivers. They found bugs

in two modern file systems, namely in the fourth extended file

system (ext4) [4] and Btrfs. In contrast to our work, their fuzzer

relies on instrumentation inserted in the driver during compile-

time, which is impossible for closed source Windows drivers like

ReFS because of PatchGuard [20].

Kim et al. [9] proposed a generic and extensible fuzzing frame-

work called Hydra for fuzzing FS drivers. They developed different

building blocks needed in the whole fuzzing process, from input

mutators to post-processors. With this approach, they were able to

find 157 bugs in various Linux file systems. In contrast to our work,

they can only test file system drivers which run in user space or

ported drivers when the source code is available.

Song et al. [21] developed Agamotto, which can fuzz kernel dri-

vers efficiently with the help of virtual machine checkpoints. Their

implementation creates VM snapshots in an elaborated manner dur-

ing testing the fuzzed payloads, which allows them to reuse kernel

states and execute repeating system calls efficiently. This approach

gave a performance improvement compared to other state-of-the-

art fuzzers. In contrast to our work, they used a modified version

of Linux as a target system.

1.3 Our Contribution
In this work, we developed a fuzzer called ReFuzz to test the pro-
prietary ReFS driver for Windows 10. In short, we contribute the

following:

• We optimized the kAFL fuzzer engine by (1) adding a new

fuzzing dimension to kAFL with novel mutation strategies,

as described below, and (2) implementing a structure-aware

mutation engine for ReFS. Due to the closed-source nature

of ReFS, this step had to be preceded by substantial reverse

engineering, which we published in previous work [14, 15].

• As a result, we found 27 unique payloads in the ReFS driver

leading to a kernel-panic and 162 unique payloads leading
to a system freeze. We reported all bugs to Microsoft in a

responsible disclosure process, and Microsoft fixed them

during the January 2022 Patch Tuesday. Therefore we got

eight CVEs assigned.
We make our findings and the implemented fuzzing framework

publicly available at https://www.cs1.tf .fau.de/research/system-

security-group/refuzz/ to encourage research and transparency.

2 BACKGROUND
Our fuzzer framework builds upon the kAFL fuzzer and targets

the ReFS driver. To understand the additions we implemented, we

outline the basics of ReFS (Section 2.1) andwrap up the functionality

of kAFL (Section 2.2).

2.1 ReFS
ReFS is Microsoft’s file system following the NTFS in many use

cases. Currently, ReFS is supposed to be used by servers to handle

enormous amounts of data. Although only the Windows Server

and Enterprise editions can create it, every Windows 10 edition,

including Windows Home, can mount ReFS partitions. Due to the

novelty of ReFS, as well as its closed-source nature, the research

community has not conducted any publicly available security audits

yet.

https://www.cs1.tf.fau.de/research/system-security-group/refuzz/
https://www.cs1.tf.fau.de/research/system-security-group/refuzz/

P
r
e
p
r
in
t

ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS) ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan

ReFS is organized chiefly as B+ trees. Exceptions are content data

of files and three structures called Superblock, Checkpoint, and the

boot sector. ReFS use different chunk sizes to allocate data. There

are sectors, clusters, and pages. A sector is the smallest amount of

data addressable on a storage device. Typically a sector consists of

512 bytes. In ReFS, the smallest allocatable amount of data is called

a cluster and consists of either eight sectors (4 KiB) or 128 sectors

(64 KiB). The B+ trees consist of nodes the size of a page, or more

precisely, each node is a page. In the most recent version of ReFS,

a page consists of 1 to 4 clusters. B+ trees in ReFS can be seen as

tables storing key-value pairs on a higher abstraction level.

An essential feature of ReFS regarding data organization is the

usage of address translation. Page references in ReFS use virtual

addresses with a few exceptions. The driver needs to translate this

address first before accessing the physical page on the storage

device. This feature allows relocating data on the disk without

adjusting all references. Instead, only the translation table has to be

changed. The translation is handled in the granularity of so-called

containers containing multiple clusters.

When mounting a ReFS partition, the driver needs to read the

cluster and sector size of the file system. This information is stored

in the boot sector, which is the first sector of the partition. The

driver locates one of the three redundant Superblocks and parses it

with this information. The Superblock contains a self-reference and

references to the two Checkpoints.
The Checkpoints contain references to different root B+ trees. At

this point, the driver first locates the required translation tables,

which are required to parse the remainder of the file system. The

root-level B+ trees again can store references to other trees. The

trees themselves are built from nodes of a page size that point to

other nodes with the help of references that store the target address

and a checksum of the target data.

For more details on the reversed engineered structures of ReFS,

please have a look at our published technical report [15] and con-

ference paper [14].

2.2 kAFL
ReFuzz builds upon the kAFL fuzzer, which in turn is based on the

famous concepts of AFL, implementing three main components:

coverage bitmap, input mutators, and input queue. We detail these

components in the following.

kAFL is a greybox fuzzer. That means it uses coverage informa-

tion to influence the input generation process of the mutator. The

fuzzer serves the input to the target program —e.g., a kernel driver—

and records the executed basic blocks. kAFL uses a hardware fea-

ture called Intel PT to perform this recording efficiently without

instrumenting the target and with little to no performance loss.

The code path recording is efficiently stored in a bitmap for each

input. If an input executed new basic blocks which no other input

executed before, the global bitmap gets updated, and a valuable

new input has been found.

The bitmap encodes the code branches taken. Every tested pay-

load gets classified according to the code paths the target executed

while processing the input. To illustrate the different classifications,

we consider three different execution paths shown at an abstract

CFG in Figure 1. Consider input A with path 1–2–4, B with 1–3–4,

1

2 3

4 5

Figure 1: Basic blocks, building an abstract example of a control flow
graph.

and C with 1–3–5. All three inputs are considered unique because

they use at least one different basic-block transition during exe-

cution. Every payload with a unique code execution is queued for

being a new starting point for further mutations. An example of

non-unique payloads is two equal executions, except one executes

a loop only once and the other payload multiple times.

When starting to fuzz a program with kAFL, the input queue

gets filled with at least one provided seed input. This input gets

presented to the target program with the help of a helper program

called Agent, and the returned bitmap is set as the initial global

bitmap. After this benchmark, the mutation engine mutates the

first seed file. This engine uses different mutators, some of them

are deterministic, and others are non-deterministic. For example,

the bitflip mutator generates a new input by flipping one bit for

every bit present. The splicing mutator is an example of a non-

deterministic mutator. It produces new inputs by copping data from

one random location of the payload to another random location.

Every tested input will create a bitmap showing the executed

code path. If the resulting bitmap shows that new basic blocks get

executed from this input, the global bitmap gets updated, and the

input is stored in the input queue. All inputs in the input queue

will serve as a starting point for the mutation engine to generate

new inputs. This way, inputs that trigger the execution of a new

basic block will be kept, and others will be discarded.

This feedback-driven input mutation makes the fuzzing process

more efficient than mutating the input without coverage informa-

tion. To use Intel PT, kAFL has implemented its custom decoder to

interpret created recordings more efficiently, containing the exe-

cuted jumps. These recordings also allow creating a bitmap from

the data. Furthermore, kAFL modified the Quick Emulator (QEMU)

and the Kernel-based Virtual Machine (KVM) and implemented dif-

ferent hypercall handlers and the interface to obtain a bitmap. This

whole framework allows to fuzz arbitrary kernel components like

drivers of closed and open-source operating systems without instru-

menting the code. The target OS containing the target component

runs in a virtual machine during the fuzzing process.

3 DESIGN CONCEPTS
The goal of ReFuzz is to find ReFS image configurations and suitable

system calls using the ReFS partition, which triggers unexpected be-

havior (bugs) that lead to a system crash or freeze. Sometimes these

bugs can be exploited to gain kernel privileges as an unauthorized

user.

P
r
e
p
r
in
t

ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan Tobias Groß, Tobias Schleier, and Tilo Müller

There exist two different kinds of bugs. The first class occurs

when mounting the file system, and the bug is triggered without

further user interaction. The second class of bugs leaves the driver

in a vulnerable state after mounting a malformed ReFS partition,

but further user interactions like reading the content of a file or

listing a directory’s content are required to trigger the bug. Our

concept to find these two types of bugs is to mount a mutated ReFS

image and access it by a variable set of actions in every fuzzing

loop. Therefore, in our concept, two dimensions can be mutated:

First, a mutation of the file system, and second, a sequence of file

operations that are executed on malformed file systems to trigger

kernel bugs eventually.

On an abstract view, ReFuzz mutates the ReFS image until the

bitmap does not change anymore, i.e., the fuzzer can not find any

image that executes new basic blocks. After this stage is reached, the

second mutation engine starts, which mutates the system calls that

operate on the malformed file system files. With this combination,

we can find both types of bug classes.

The main barriers to performing such a fuzzing loop are that

a ReFS partition requires a minimal size of around 2GB and that

ReFS uses checksums heavily to guarantee data integrity. 2GB of

input data constitutes a massive search space for the fuzzer. We

tackle this problem by extracting the organizational and metadata

from the ReFS image, which decreases the input space to a factor

of around 2000 and let the mutators work on this extracted data.

Before testing the driver with an extracted and mutated input, it

gets expanded over the original image.

As mentioned before, ReFS stores the organizational and meta-

data in B+ tree nodes. The nodes are linked with references, each

consisting of the target address and a checksum of the target data.

In the end, ReFS confronts us with chains of checksums that will

prevent the driver from mounting the file system when not cor-

rectly adjusted to the mutated data. We address this by analyzing

the locations of all present checksums on the ReFS image before the

fuzzer starts and by correcting the checksums after the mutators

altered the input data.

Our second dimension —the file system actions— gets initial-

ized with at minimum one seed. This seed contains the information

whichever system calls and parameters should be called aftermount-

ing the ReFS image. These calls get mutated after no more new basic

block can be reached by only mutating the ReFS image. The system

call mutation engine can alter the list of actions by removing or

adding calls with random parameters. Additionally, the engine can

alter the parameters of existing calls.

In every iteration of the fuzzing loop, two concrete inputs get

tested as a tuple. That means a helper program receives altered ReFS

metadata and a serialized sequence of actions. The helper mounts

the modified ReFS image and executes the specified actions.

4 IMPLEMENTATION
This section details the implemented components and how they

interact as a whole framework. In general, there are two main types

of systems: (1) A host system that spawns (2) guest VMs as tar-

gets for our mutated ReFS images. Figure 2 shows the components

present on the host machine and an exemplary guest system. The

host executes the master process, which coordinates the mutation

Fuzzer Host (Ubuntu 16.04)

Fuzzer Guest

File System
Actions Seed

Checksum
Information

Duplicate Table
Information

ReFS Metadata
Pages Seed

ReFuzz

ReFS Mutator
Engine

FS Action Mutator
Engine

Master Process

…

spawns

mutates

uses

uses
init

init

init

Figure 2: Excerpt of the different components involved in fuzzing
the ReFS driver and residing on the host. Stock kAFL components
are not shown.

of inputs and the distribution of mutated inputs to the guest VMs.

The master process also uses the stock AFL mutators to mutate the

”compressed” ReFS image and corrects the checksumswith the ReFS

mutator engine. For the structure-aware data correction, the engine

needs the Checksum Information and Duplicate Table Information.
The ”compressed” image is named ReFS Metadata Pages Seed in

Figure 2. The last component shown is the File System Actions Seed
file which contains the initial action list executed by the agent after

mounting the ReFS image.

The VM executes a specially prepared Windows system based

on Version 21H1 (OS Build 19043.1052). It contains preinstalled

components for the fuzzing process and will load and create ad-

ditional components during the fuzzing process. Figure 3 shows

an overview of all components. The preinstalled components are

drawn with a solid line. Components that get transferred from the

host to the guest during the fuzzing or components created during

the fuzzing loop are drawn with a dotted line. The preinstalled

Loader executes the ReFS Fuzzer Agent 1 . At the first start of the

ReFS Fuzzer Agent, it initializes the metadata translation table 2 . In

every fuzzing loop, it injects theMutated Metadata with the help of

the translation information 3 and creates an Overlay Image 4 to

protect the original image from alterations. Last, the Overlay Image
gets mounted, and the actions defined in the File System Actions
data get executed 5 .

We adapted the Loader from the kAFL framework. It patches the

panic handler of the kernel to perform a hypercall when executed,

allowing a quick response in case of a panic. Additionally, the Loader
submits the memory address where the host should transfer the

two payloads (compressed image and file system action list). In the

end, it requests the ReFS Fuzzer Agent program and executes it.

The preinstalled Translation Table gets used together with the

transferred Mutated Metadata from the agent to expand the meta-

data into the preinstalled ReFS Image. A newly created Overlay
Image protects the ReFS Image from unwanted changes from the

mounting process and the file system actions.

P
r
e
p
r
in
t

ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS) ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan

Fuzzer Guest (Windows 10)

Translation
Table

ReFS Image

Loader

ReFS Fuzzer
Agent

Mutated
Metadata

File System
Actions

Overlay Image

12

3

4

5

Figure 3: Software and data components inside the guest system.
Solid drawn components are preinstalled. Dotted components are
injected or created during runtime.

ReFS Mutator
Engine

Translation
Table

Checksum
Information

ReFS Metadata
Pages

Duplicate Table
Information

ReFS Image

Figure 4: Showing the output of the ReFS Mutator Engine after the
analysis of a ReFS image.

The ReFS Fuzzer Agent coordinates the actual fuzzing loop in

consultation with the ReFuzz running on the host machine. The

agent is detailed in the following subsection.

4.1 ReFS Mutator
The ReFS Mutator Engine is used at two different points while

fuzzing the ReFS driver. First, the offline component analyzes a

given ReFS image and outputs several artifacts needed later. The

created artifacts are shown in Figure 4. The main goal of this step is

to reduce the amount of data that the mutators will later alter. The

relevant data, i.e., the metadata pages, gets collected and outputted

in a file called ReFS Metadata Pages. The second goal is to collect

all present checksums. After a mutation, this information is used

to correct the checksums to create a semi-valid ReFS image, which

will force the driver to pass the initial integrity checks successfully.

This offline component collects all pages present on the file

system by traversing the whole metadata tree starting at both

checkpoints. Since every reference to a node contains checksum

information, these also get collected during the traversing process.

Additionally, the boot sector and the three superblocks get extracted.
From our reverse engineering of ReFS, we know that some meta-

data is stored twice on the file system. These duplicate tables also

get identified during the traversing process, and the location infor-

mation of duplicates gets stored in the Duplicate Table Information
file. The revisor can use this information later to copy mutated data

to the corresponding duplicate table optionally.

Every page the engine encounters gets written sequentially to

the metadata pages output file. To copy the pages back to the cor-

rect location in the original image, we save the offset in the ReFS

SUPB SUPB SUPB

CHKP CHKP

Extractor

Figure 5: Data view showing a complete ReFS image and the extracted
metadata after the extractor process. (SUPB = Superblock, CHKP =
Checkpoint)

Revisor

Figure 6: Data view of the revisor, showing the mutated metadata
before and the checksum corrected data afterward.

Metadata Pages file together with the actual offset in the ReFS im-

age. This data allows translating the location of checksums in the

ReFS image to the location in the pages file. An abstract data view

is shown in Figure 5. The whole partition with lots of unallocated

data is on the lefthand side, and the extracted pages as a compact

block on the righthand side.

The second use case of the ReFS Mutator Engine is the online
usage which we integrated into the basis fuzzing framework. This

part gets called after every mutation of the pages file. It corrects the

checksums present in the pages data. Optionally, it also copies the

mutated data to a duplicate table if it exists. This process is shown

in Figure 6. The blue rectangle symbolizes mutated data, and the

red rectangles the corrected checksums and duplicated information.

Figure 7 shows the whole lifecycle of the ReFuzzmutation engine,

starting from a valid ReFS image to ending with a mutated semi-

valid image. It shows the steps performed by the offline component

Extractor and the two components integrated into the fuzzer host:

Mutators and Revisor. These mutate the extracted metadata and

correct the affected checksums. The Agent implements the last

component. It injects the semi-valid mutated metadata into the full

valid image to receive a complete semi-valid ReFS image.

4.2 Fuzzer Agent
The agent gets executed by the Loader and executes the different

steps of the fuzzing loop. On startup, it initializes the translation

data from the preinstalled Translation Table file. After that, it per-
forms the following six steps in every fuzzing loop iteration:

• Request Payload via hypercall from the ReFuzz host.
• Expand Image with the help of the ReFS injector. This pro-

cess is shown in Figure 8. The Translation Table defineswhere
the injector must place the ”compressed” image data in the

P
r
e
p
r
in
t

ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan Tobias Groß, Tobias Schleier, and Tilo Müller

Mutators

Extractor Injector

Revisor

Checksums &
Duplicate Tables

Translation Info

Figure 7: Lifecycle of the ReFuzz mutation engine.

Injector

Figure 8: Data view before and after the injector takes the metadata
and overwrites parts of the complete ReFS image.

full image. On the lefthand side, the mutated ”compressed”

image is shown, and on the righthand side, the resulting

mutated complete ReFS image.

• Create Overlay protecting the mutated image from un-

wanted write modifications during the mounting process

and the executed actions.

• Mount Image by using the overlay image.

• Execute FS Actions by interpreting the second payload

containing a serialized list of remote procedure calls.

• Unmount Image and delete the overlay image.

If no failure occurs during the fuzzing loop, i.e., no bug in the

ReFS driver was triggered, a new loop iteration starts. If a failure

occurs, the VM gets reset to a snapshot right before the Loader
requests and executes the ReFS Fuzzer Agent. The agent then starts

with initializing the translation data as described before.

4.3 File System Action Mutator
As stated before, we added a second fuzzing dimension to kAFL.

This second dimension reflects the actions performed on the data

present on the ReFS image. We implemented a specific mutator for

this dimension, which will alter the actions when the mutation of

the ReFS image does not find any new input that executes unseen

code paths. In other words, the mutation of the ReFS metadata

will create a tree of interesting metadata payloads. Every time a

payload gets mutated, it will be added as a new leaf node to the

node representing the original data when it executes code paths

never executed before. If the mutation engine has processed all leaf

nodes and no new paths are found, the process starts over at the

root node, and every node gets mutated again.

We modified this behavior by mutating our file system actions

when no new code paths are found by mutating the file system

metadata exclusively anymore. The action mutator operates on a

given sequence of actions, the starting payload. Overall, our frame-

work can handle 26 different actions, such as creating directories,

creating files, creating symbolic links, or getting compressed file

size.

Every mutation has the chance to modify the parameters of

an existing action, adding a new action or removing a present

action. To alter the parameters meaningfully, we have implemented

different parameter types that get treated differently: string, path,

pointer, int, and long. All but the path parameter get mutated so

that their type constraints are respected. For the path parameter, we

implemented a file pool. This pool is initializedwith the paths of files

and folders present on the ReFS image. The file pool gets accordingly

updated while iterating over the sequential list of actions. If we

encounter a delete action, the respective target gets removed from

the pool. An action that adds new objects to the file system (e.g.,

create a file) will add a new path to the pool. This technique allows

mutating paths parameter meaningful.

When the mutator finishes, the sequence of actions gets serial-

ized. It can be transferred to the agent component running on the

target VM in this form.

4.4 Other Modifications
The most significant changes we implemented in the kAFL frame-

work are the usage of a second fuzzing dimension. We had to adjust

the kAFL QEMU and KVM with a new hypercall to transmit the

memory address of the second payload. Additionally, we extended

the kAFLQEMUdevice to set the file for sharing the second payload.

Several other kAFL components had to be adjusted to implement

a second fuzzing dimension: e.g., MapserverProcess, KaflTree, and
benchmark.

Our long-running fuzzing loop revealed a bug in the synchro-

nization between the fuzzing master and the agent running in the

target VM. Therefore we adjusted the locking in QEMU (hypercall.c).
Additionally, we fixed the handshake protocol between these two

components to fit our needs.

When the kAFL component on the host detects a time- out of

a target VM —it does not send a request for a certain amount of

time— it will reload the VM, which can be in two flavors: soft

and hard reload. Soft reload uses a function in QEMU to reset the

VM to the starting snapshot. This kind of reload is a relatively

fast process. A Hard reload will kill the QEMU process and start

a new one, where the snapshot has to be loaded entirely from the

hard disk. This hard reload is slower than the soft reload, but this

reload mechanism is needed if the QEMU process hangs up. We

had to fix the mechanism of choosing the reload method. Before

P
r
e
p
r
in
t

ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS) ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan

our modification, the framework performed every reload in the

hard mode.

We also made some slight adjustments to the kAFL mutators. In

general, a fixed amount of deterministic mutations dependent on the

size are performed on the payload (i.e., ReFS metadata). The number

of non-deterministic mutations (called havoc and splicing) applied
to a payload depends on the fuzzing loop’s performance, which

is determined in a benchmark beforehand. If a certain threshold

of VM reloads is reached, the mutation process gets stopped, and

another payload in the queue is taken. This solution will prevent

wasting time on a payload that seems to be a blind end.

There are 376 million deterministic mutations to perform on

a single payload for our payload size. If we theoretically assume

the test duration of one payload as 10ms, the deterministic phase

needs 43 days to finish for a single payload. A second observation

was that fuzzing the ReFS driver with our setup was sometimes

unstable, resulting in VM timeouts with no causal relationship to

the tested payload. This misbehavior sums up, and the payload

mutation is aborted in the early deterministic phase, meaning that

only the first view kilobytes of our payload get muted with the

bitflip mutators. We solve these problems by introducing a chance

that a specific mutation gets tested. With this option, a user can

set the chance, which will lead to a reasonable period for fuzzing

one specific payload. The benefit is that this way, more new code

paths can be found because other found payloads will gets mutated

much more quickly.

5 EVALUATION
The evaluation of ReFuzz consists of three perspectives. First, we
want to investigate the performance of our framework in respect

of the fuzzing loop and the found new code paths. The second

evaluation treats the bugs we could find with our framework. Last

we want to compare our framework with other competitors, which

are publicly available and can be used to fuzz closed source kernel

drivers or can handle checksummed data.

We created the data by running ReFuzz for 52 days with four

target-VMs in parallel. As hardware, we used a notebook with

an Intel
®
Core™ i5-10210U CPU @ 1.60GHz with four cores (8

threads) supporting Intel PT and 16GB of RAM. The same 2GB

ReFS formatted image was used as a seed for all tests. This image

contains two folders, 24 files in the root directory, nine files in the

first folder, and 19 files in the second folder. All files are plain text

files containing randomASCII characters. Also, the same file system

action seed was used for all evaluations defining the following

actions: list directory one, list directory two, and read the content

of file one.

5.1 Performance
First, we want to present our results in terms of performance.

Thereby we can consider two different aspects: (1) We evaluate

the temporal performance of our fuzzing agent from start to end

during testing a tuple of payloads (i.e., ReFS metadata and actions).

(2) We want to look at the development of our payloads.

We measured the duration of several operations during the test

of payloads in a fuzzing loop iteration. The results can be seen in

Figure 9. We evaluated the performance for the following opera-

tions: startup —which the loader only performs once if the VM gets

reloaded—, transfer of the two payloads, expansion of the mutated

ReFS metadata into the full VHD image, creating an overlay image

and mounting it, using the file system as defined in the second

payload and unmounting and deleting the overlay VHD image.

The diagram shows a separate candlestick for every operation.

It consists of a box that represents the first and the third quartile.

The black line defines the calculated mean value over all measured

durations. The lowest and highest line shows the observed min

and max values. We measured each operation at least 17,000 times

except the startup operation, which occurred only 1,100 times. Note

that the scale on the y-axis is logarithmic.

We see that the startup and transfer operation (in the mean) is

very efficient compared to the others. The other operations directly

use persistent data (i.e., the ReFS VHD image) stored on the target

VM system image, which is again stored on the solid-state disk of

the host system.

The expand operation writes the mutated metadata from RAM to

the persistently stored VHD image. The mounting operation reads

data from the VHD image through an overlay image. The use of

the file system also needs to load persistent data from the disk, and

the unmounting operation writes uncommitted data to the overlay

image.

The different types of payloads have to be defined first to under-

stand the evaluation of code paths. Every payload which was once

found to execute new parts of the code is stored in the findings tree.

One type of payload is called favorite. A favorite is a payload

that executes a specific node transition (i.e., edge) and is the fastest

payload to do so relating to the fuzzing loop duration. That means

that over time some payloads can lose their favorite status if a new

one could be found, which is more performant.

Another type of payload in this evaluation is the pending type. A

new mutated payload that executes a unique code path is appended

to a queue for further mutations. Every item in that list is typed as

pending because they have not been mutated yet.

Figure 10 shows the development of found payloads with unique

paths during our run. After the first 24 hours, we had twelve find-

ings, six pending, and five favorites. The overall amounts constantly

grew in all three categories. In the end, the pending payloads seem

to get fewer.

Two exceptions in the steady growth can be observed at the start

of day seven and during day ten, where almost every pending pay-

load where processed. After 52 days, we enlarged the exploration of

the path to 260 findings, 49 pending, and 168 favorites. The number

of pending payloads shows a great potential to find more bugs after

we stopped our evaluation.

5.2 Found Bugs
During our longest run of 52 days, ReFuzz was able to find 29

payloads (i.e., altered ReFS metadata) which caused the Windows

kernel to panic, meaning that the system crashed and rebooted. We

verified that 27 are true positives, and only two are false positives

that did not cause a kernel crash while we tested the corresponding

mutated ReFS.

P
r
e
p
r
in
t

ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan Tobias Groß, Tobias Schleier, and Tilo Müller

0.1

1

10

Startup Transfer Expand VHD Mount VHD Use FS Unmount VHD

S
e
c
o
n
d
s

Quartiles

Figure 9: Amount of time passed during a fuzzing loop iteration partitioned by individual operations.

0

50

100

150

200

250

300

001 008 015 022 029 036 043 050 057

Day

Pending

Findings

Favorites

P
a
y
l
o
a
d
s

Figure 10: Development of the number of payloads while fuzzing the ReFS driver.

We reported our findings to Microsoft in a responsible disclosure

process. Microsoft acknowledged that these payloads include ten

unique issues. Eight are classified with critical severity as they allow

for remote code execution
1
. The other remaining issues allow a

moderate denial-of-service attack. These issues are fixed by eight

patches and rolled out at the January 2022 Patch Tuesday. The table

in the appendix A, shows details of our findings. More details are

available at https://www.cs1.tf .fau.de/research/system-security-

group/refuzz/. For example, the table shows the technical reason

1
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21892

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21928

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21958

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21959

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21960

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21961

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21962

https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21963

for the crash in the column Crash Code, a rough description of the

action needed to trigger the crash, and the assigned CVE.

The number of different bug check codes that occurred while

testing our findings shows that we found several unique bugs in

the ReFS driver, not necessarily related to each other. The following

list of codes
2
occurred while we have tested mutated payloads:

• 1x KMODE EXCEPTION NOT HANDLED (0x1E): This in-
dicates that a kernel-mode program generated an exception

that the error handler did not catch.

• 11x PAGE FAULT IN NONPAGED AREA (0x50): This in-
dicates that invalid system memory has been referenced.

Typically the memory address is wrong, or the memory ad-

dress is pointing at freed memory.

2
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-

code-reference2

https://www.cs1.tf.fau.de/research/system-security-group/refuzz/
https://www.cs1.tf.fau.de/research/system-security-group/refuzz/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21892
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21928
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21958
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21959
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21960
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21961
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21962
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2022-21963
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-code-reference2
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/bug-check-code-reference2

P
r
e
p
r
in
t

ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS) ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan

• 2x KERNEL SECURITY CHECK FAILURE (0x139): This bug
check indicates that the kernel has detected the corruption

of a critical data structure.

• 20x REFS FILE SYSTEM (0x149): This indicates that a file
system error has occurred.

Another interesting fact is the progress of findings of timeout

and panic bugs. The amount of findings over time is shown in

Figure 11, separated into panic and timeout payloads. Bugs that

force Windows to freeze are not as critical as bugs that crash the

system but can also be used for denial-of-service attacks.

After the whole evaluation phase of 52 days, we have found

162 unique timeout payloads. As shown in Figure 11, the finding

of timeout payloads is distributed evenly over time, whereas we

found most panic payloads in the first seven days. If we look at

the number of findings after 24 hours, we can see that ReFuzz has
found nine unique panic and one timeout payload.

5.3 Comparison with other Fuzzers
As the related work section states, some other research targets fuzz

testing of file system drivers or drivers in general. However, only

some of them are suitable for fuzzing the ReFS driver of Windows

because we need the ability to test closed source software with a

feedback channel.

Janus [23], Hydra [9], and Agamotto [21] are all state-of-the-art
fuzzers proposed as of late, targeting (file system) kernel drivers.

They all have in common that they require the sources of the tar-

get drivers and kernels to either modify them (Agamotto) or com-

pile them to run as a userspace application (Janus and Hydra) to

retrieve coverage information. Both are impossible for the ReFS

Windows driver because this software is closed source.

To the best of our knowledge, the only fuzzing frameworks

allowing us to retrieve coverage information from closed source

software via hardware assistance are kAFL based fuzzers. These

allow running the target code without modifications. So we decided

to compare the performance of ReFuzz to the base kAFL implemen-

tation and the Redqeen fuzzer, which is also based on kAFL, in

the following sections.

5.3.1 Base kAFL

. Since ReFuzz is based on kAFL, we want to compare if our im-

plementation performs better than the base fuzzer. Because some

modifications of kAFL are necessary to target the ReFS driver (e.g.,

increase the payload size and implement an Agent running on the

target VM! (VM!)), we decided not to use the pure kAFL implemen-

tation for this evaluation.

Because our ReFuzz builds upon the kAFL fuzzer, we only dis-

abled the checksum and duplicate table correction of our framework

together with the second fuzzing dimension to keep it straight-

forward. We kept the extraction and insertion mechanism of our

ReFuzz implementation. This feature is advantageous over the pure

kAFL because our mutation engine can precisely target the used

FS! (FS!) data without wasting time mutating unused parts of the

FS! image. The untouched kAFL version would perform worse than

the version used in our evaluation.

After a 44 hour run of the slightly modified base kAFL fuzzer

where 37,000 payloads were tested, we found zero panic and time-

out payloads. That shows that checksum correction is essential in

fuzzing ReFS and other modern FS! drivers with excessive check-

sums to guarantee data integrity. Without a checksum correction

to generate semi-valid FS! images, checksum validation methods in

the driver will always safely abort the code execution before hitting

potential bugs. Moreover, base kAFL would perform worse than

our evaluation because it has to handle the full-sized ReFS images

with 2 GB of data.

To evaluate the differences of kAFL and ReFuzz even further

with a statistical significance, we ran both fuzzers ten times for

24 hours and evaluated the bitmap development over time. The

bitmap of an AFL-based fuzzer tracks the executed code path, i.e.,

the code coverage. kAFL and ReFuzz calculate a hash for every

executed jump in the target from the source and destination address

of the jump. The hash defines where the jump gets logged in the

coverage bitmap, but the hash calculation can collide. Resulting in

two different jumps can be logged in the same bitmap’s position.

We use the bitmap as an approximation of the actual code cov-

erage. The accurate coverage of the executed payloads is higher

than the logged bitmap, but it is adequate to see the differences in

reached code coverage of kAFL and ReFuzz.
Figure 12 shows the development of code coverage over 24 hours.

The solid lines represent the mean coverage of both fuzzers. There

are no significant differences present. Between hour six and hour

16, ReFuzz performs slightly better, but in the end, kAFL seems to

outperform ReFuzz in code coverage. The minimal and maximal

code coverages (drawn as dashed lines) show that ReFuzz has a

more significant variance than kAFL. One ReFuzz run produced a

much higher code coverage than the other kAFL and ReFuzz runs.
In conclusion, if we look only quantitatively at the coverage over

time, no statistically significant differences of both fuzzers can be

experienced. This result is unexpected because, in the long 44-hour

run, kAFL has found no bugs in contrast to ReFuzz.
In Figure 13, the merged bitmaps of all ten runs of ReFuzz (13b)

and kAFL (13a) are visualized qualitatively. Jumps executed once

are drawn as black dots. Green dots are jumps executed twice, and

red dots are executed more than twice. ReFuzz was able to execute

more different code paths than kAFL, but kAFL executed the same

jumps more often.

Figure 14 compares the bitmaps of kAFL and ReFuzz. The fig-
ure reveals a significant difference regarding the coverage of the

fuzzers. Subfigure 14a shows the code path only found by kAFL,

Subfigure 14b shows the code path only found by ReFuzz, and Fig-

ure 15 shows the code path executed by both fuzzers. With this

comparison, we can draw the following conclusions. Both fuzzers

can execute different code paths, but ReFuzz can execute more code

exclusively. Both fuzzers can reach some identical code parts. To-

gether with the outcomes of the long runs of ReFuzz and kAFL, it

seems that the code paths executed exclusively by ReFuzz are more

promising in finding bugs than the ones executed by kAFL.

This result is very interesting because it shows that code cover-

age is not only interesting as a quantitative measurement as Klees

et al. [10] propose in their work, but there is also a qualitative part

in the code coverage metric, as we have shown in our evaluation.

5.3.2 Redqueen

. The Redqeen fuzzer proposes to overcome checksums andmagic

P
r
e
p
r
in
t

ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan Tobias Groß, Tobias Schleier, and Tilo Müller

0

30

60

90

120

150

001 008 015 022 029 036 043 050 057

Day

Unique Panics

Unique Timeouts

P
a
y
l
o
a
d
s

Figure 11: Temporal progression of payload findings leading to a kernel panic or timeout.

0

100

200

300

400

500

600

700

800

900

0 2 4 6 8 10 12 14 16 18 20 22 24

B
r
a
n
c
h
e
s
T
a
k
e
n

Hour

ReFuzz

kAFL

Figure 12: Amount of code path executed from kAFL and ReFuzz over time. The values are extracted from the bitmap.

bytes automatically with no further data format knowledge. Al-

though, in theory, this fuzzer should be performant in fuzzing the

ReFS driver, we decided not to test the driver with Redqeen. The

reason is that we were not able to utilize Redqeen without any

or only minor modifications. Since Redqeen lacks the ability of

metadata extraction and injection, we would need to increase the

payload size to 2GB which exceeds the default 128kB of Redqeen.

We doubt that a slightly modified version of Redqeen would

outcompete our implemented solution because of the bigger in-

put space —2GB vs. 916kB— that needs to be explored and the

chains of checksummed data. Also, Redqeen has to run the target

code multiple times iteratively with a slightly modified version

of the input to figure the correct checksums out. Because of the

relatively long-running fuzz loop of kAFL, this process would be

costly performance-wise.

Another constraint of Redqeen is that, in theory, it can be

used with any target OS. However, the current implementation

only focuses on special packed user applications combined with a

Linux environment. Redqeen needs to instrument the target code

to observe compare-instructions, which is not easily possible for

Windows because of PatchGuard [20].

To summarize, we doubt that Redqeen can outcompete our

highly specialized approach for ReFS because of the much bigger

input space and the additional expensive fuzzing runs required

to figure out the corrected checksums. Moreover, it would need

notable changes to target the Windows kernel with Redqeen.

6 CONCLUSION
To the best of our knowledge, we are the first who systematically

fuzzed the ReFS driver and found a massive amount of previously

unknown bugs. During our evaluation, we have shown that with

pre-existing solutions, such as base kAFL, no bugs can be found

in ReFS. While the performance of ReFuzz in terms of iterations

per unit time cannot compete with other solutions, we outperform

other solutions in terms of effectiveness. That means while the per-

formance of ReFuzz suffers from the ineffective agent component,

which has to deal with a large amount of persistent data, we were

P
r
e
p
r
in
t

ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS) ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan

(a) kAFL (b) ReFuzz

Figure 13: Coverage bitmaps produced by base kAFL and ReFuzz visualized as a heatmap. Black: Jumps executed once. Green: Jumps executed
twice. Red: Jumps executed at least three times. (Part 1)

(a) Exclusive kAFL (b) Exclusive ReFuzz

Figure 14: Exclusive coverage reached by kAFL and ReFuzz visualized as a heatmap. Black: Jumps executed once. Green: Jumps executed twice.
Red: Jumps executed at least three times. (Part 2)

able to compensate for that and provide generally better fuzzing

results for ReFS than any other solution before.

Although works like Redqeen exist, that in theory, can find

correct checksums while generically mutating input [1], we think

that a specialized mutation engine always outcompetes generic

processes. Additionally, we have the hurdle of a massive fuzzing

input with modern file systems, which we had to circumvent.

In the future, ReFuzz could be extended to use a lightweight snap-
shot mechanism similar to Agamotto[21] to allow tuning its speed

by skipping the unmounting process and loading a VM snapshot

instead. We unsuccessfully tried many ways to speed up the fuzzing

loop during our research so far. We had the idea to keep the ReFS

VHD image in RAM instead of storing it on persistent data. How-

ever, the VHD interface from Microsoft cannot use files stored in

RAM. Our second approach of keeping the whole Windows system

in RAM did not bring improvements either.

To summarize, we introduced a structure-aware fuzzing engine

called ReFuzz, which targets the Windows ReFS driver. Our ap-

proach circumvents two major problems when fuzzing: (1) Correc-

tion of checksums present on a ReFS image to execute code after

the checks are performed. (2) The massive amount of input data

being fuzzed —at least 2GB— which no current greybox fuzzer can

handle in a performant manner. As a result, we were able to find

27 unique panic payloads triggered from bugs in the ReFS driver.

P
r
e
p
r
in
t

ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan Tobias Groß, Tobias Schleier, and Tilo Müller

Figure 15: Overlapping coverage bitmap from kAFL and ReFuzz vi-
sualized as a heatmap. Black: Jumps executed once. Green: Jumps
executed twice. Red: Jumps executed at least three times. (Part 3)

We reported these bugs to Microsoft in a responsible disclosure

process, which led to eight CVEs assigned to us, and those flaws

got patched in the January 2022 Patch Tuesday.

To conclude, we think our approach for ReFS can be adapted to

fuzz other modern file system drivers in the future. Any open or

closed source drivers running in kernel mode could be fuzzed. For

example, fuzzing Apple’s APFS could also benefit from ourmetadata

extraction and checksum correction method. Plum and Dewald

[13][5] analyzed that every file system data in APFS is wrapped

inside an object which contains a self-checksum and heavily uses

B-Trees to structure the data. Mutating only the file system data

and skipping content data and unused space could also speed up

the fuzzing process of APFS, although the smallest possible APFS

image is much smaller than ReFS [8].

ACKNOWLEDGMENTS
This work was supported by the German Federal Ministry of Edu-

cation and Research (BMBF) as part of the FIDI project.

REFERENCES
[1] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and

Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence.

In Symposium on Network and Distributed System Security (NDSS).
[2] Domagoj Babic, Lorenzo Martignoni, Stephen McCamant, and Dawn Song. 2011.

Statically-directed dynamic automated test generation. In Proceedings of the 20th
International Symposium on Software Testing and Analysis, ISSTA 2011, Toronto,
ON, Canada, July 17-21, 2011, Matthew B. Dwyer and Frank Tip (Eds.). ACM,

12–22. https://doi.org/10.1145/2001420.2001423

[3] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-

hury. 2017. Directed Greybox Fuzzing. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, Bhavani M. Thuraisingham, David Evans, Tal

Malkin, and Dongyan Xu (Eds.). ACM, 2329–2344. https://doi.org/10.1145/3133

956.3134020

[4] Mingming Cao, Suparna Bhattacharya, and Ted Ts’o. 2007. Ext4: The Next

Generation of Ext2/3 Filesystem. In 2007 Linux Storage & Filesystem Workshop,
LSF 2007, San Jose, CA, USA, February 12-13, 2007, Ric Wheeler (Ed.). USENIX

Association. https://www.usenix.org/conference/2007-linux-storage-filesystem-

workshop/ext4-next-generation-ext23-filesystem

[5] Andreas Dewald and Jonas Plum. 2018. APFS INTERNALS FOR FORENSIC ANAL-
YSIS. https://static.ernw.de/whitepaper/ERNW_Whitepaper65_APFS-

forensics_signed.pdf Accessed: 16.02.2022.

[6] Google. [n.d.]. syzkaller - kernel fuzzer. https://github.com/google/syzkaller

Accessed: 10.11.2021.

[7] Kurt H. Hansen and Fergus Toolan. 2017. Decoding the APFS file system. Digit.
Investig. 22 (2017), 107–132. https://doi.org/10.1016/j.diin.2017.07.003

[8] hoakley. 2019. Hitting the limits of APFS is both easy and confusing. https://eclect

iclight.co/2019/08/12/hitting-the-limits-of-apfs-is-both-easy-and-confusing/

Accessed: 16.02.2022.

[9] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo

Kim. 2020. Finding Bugs in File Systems with an Extensible Fuzzing Framework.

ACM Trans. Storage 16, 2 (2020), 10:1–10:35. https://doi.org/10.1145/3391202

[10] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.

Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018, David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang

(Eds.). ACM, 2123–2138. https://doi.org/10.1145/3243734.3243804

[11] Michal Zalewski (lcamtuf). [n.d.]. american fuzzy lop (2.52b). https://lcamtuf.co

redump.cx/afl/ Accessed: 11.10.2021.

[12] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju, and Vijay

Chidambaram. 2018. Finding Crash-Consistency Bugs with Bounded Black-Box

Crash Testing. In 13th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, Andrea C.

Arpaci-Dusseau and Geoff Voelker (Eds.). USENIX Association, 33–50. https:

//www.usenix.org/conference/osdi18/presentation/mohan

[13] Jonas Plum and Andreas Dewald. 2018. Forensic APFS File Recovery. In Proceed-
ings of the 13th International Conference on Availability, Reliability and Security,
ARES 2018, Hamburg, Germany, August 27-30, 2018, Sebastian Doerr, Mathias

Fischer, Sebastian Schrittwieser, and Dominik Herrmann (Eds.). ACM, 47:1–47:10.

https://doi.org/10.1145/3230833.3232808

[14] Paul Prade, Tobias Groß, and Andreas Dewald. 2020. Forensic Analysis of the

Resilient File System (ReFS) Version 3.4, In DFRWS 2020 EU, Oxford, United

Kingdom, June 3-5, 2020. Digital Investigation 32, Supplement. https://doi.org/

10.1016/j.fsidi.2020.300915

[15] Paul Prade, Tobias Groß, and Andreas Dewald. 2019. Forensic Analysis of the
Resilient File System (ReFS) Version 3.4. Technical Report CS-2019-05. Department

Informatik. https://doi.org/10.25593/issn.2191-5008/CS-2019-05

[16] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida,

and Herbert Bos. 2017. VUzzer: Application-aware Evolutionary Fuzzing. In

24th Annual Network and Distributed System Security Symposium, NDSS 2017,
San Diego, California, USA, February 26 - March 1, 2017. The Internet Society.
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-

application-aware-evolutionary-fuzzing/

[17] Ohad Rodeh, Josef Bacik, and Chris Mason. 2013. BTRFS: The Linux B-Tree

Filesystem. ACM Trans. Storage 9, 3 (2013), 9:1–9:32. https://doi.org/10.1145/25

01620.2501623

[18] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel,

and Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS

Kernels. In 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017, Engin Kirda and Thomas Ristenpart (Eds.). USENIX

Association, 167–182. https://www.usenix.org/conference/usenixsecurity17/tec

hnical-sessions/presentation/schumilo

[19] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques

in Binary Analysis. In IEEE Symposium on Security and Privacy.
[20] Skywing. 2007. PatchGuard Reloaded - A Brief Analysis of PatchGuard Version 3.

http://www.uninformed.org/?v=8&a=5 Accessed: 07.10.2021.

[21] Dokyung Song, Felicitas Hetzelt, Jonghwan Kim, Brent ByungHoon Kang, Jean-

Pierre Seifert, and Michael Franz. 2020. Agamotto: Accelerating Kernel Dri-

ver Fuzzing with Lightweight Virtual Machine Checkpoints. In 29th USENIX
Security Symposium, USENIX Security 2020, August 12-14, 2020, Srdjan Cap-

kun and Franziska Roesner (Eds.). USENIX Association, 2541–2557. https:

//www.usenix.org/conference/usenixsecurity20/presentation/song

[22] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. 2020. Krace:

Data Race Fuzzing for Kernel File Systems. In 2020 IEEE Symposium on Security
and Privacy, SP 2020, San Francisco, CA, USA, May 18-21, 2020. IEEE, 1643–1660.
https://doi.org/10.1109/SP40000.2020.00078

[23] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.

2019. Fuzzing File Systems via Two-Dimensional Input Space Exploration. In

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. IEEE, 818–834. https://doi.org/10.1109/SP.2019.00035

[24] Junfeng Yang, Can Sar, Paul Twohey, Cristian Cadar, and Dawson R. Engler. 2006.

Automatically Generating Malicious Disks using Symbolic Execution. In 2006
IEEE Symposium on Security and Privacy (S&P 2006), 21-24 May 2006, Berkeley,
California, USA. IEEE Computer Society, 243–257. https://doi.org/10.1109/SP.2

006.7

https://doi.org/10.1145/2001420.2001423
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://www.usenix.org/conference/2007-linux-storage-filesystem-workshop/ext4-next-generation-ext23-filesystem
https://www.usenix.org/conference/2007-linux-storage-filesystem-workshop/ext4-next-generation-ext23-filesystem
https://static.ernw.de/whitepaper/ERNW_Whitepaper65_APFS-forensics_signed.pdf
https://static.ernw.de/whitepaper/ERNW_Whitepaper65_APFS-forensics_signed.pdf
https://github.com/google/syzkaller
https://doi.org/10.1016/j.diin.2017.07.003
https://eclecticlight.co/2019/08/12/hitting-the-limits-of-apfs-is-both-easy-and-confusing/
https://eclecticlight.co/2019/08/12/hitting-the-limits-of-apfs-is-both-easy-and-confusing/
https://doi.org/10.1145/3391202
https://doi.org/10.1145/3243734.3243804
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://www.usenix.org/conference/osdi18/presentation/mohan
https://www.usenix.org/conference/osdi18/presentation/mohan
https://doi.org/10.1145/3230833.3232808
https://doi.org/10.1016/j.fsidi.2020.300915
https://doi.org/10.1016/j.fsidi.2020.300915
https://doi.org/10.25593/issn.2191-5008/CS-2019-05
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/vuzzer-application-aware-evolutionary-fuzzing/
https://doi.org/10.1145/2501620.2501623
https://doi.org/10.1145/2501620.2501623
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/schumilo
http://www.uninformed.org/?v=8&a=5
https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://www.usenix.org/conference/usenixsecurity20/presentation/song
https://doi.org/10.1109/SP40000.2020.00078
https://doi.org/10.1109/SP.2019.00035
https://doi.org/10.1109/SP.2006.7
https://doi.org/10.1109/SP.2006.7

P
r
e
p
r
in
t

ReFuzz — Structure Aware Fuzzing of the Resilient File System (ReFS) ACM ASIACCS 2022, May 30–June 03, 2022, Nagasaki, Japan

A RESULTING DATASET
The following table shows a list of payloads our ReFuzz found dur-

ing evaluation, which causes the Windows kernel to panic. Column

indicates the VHD image number in the dataset. Crash Code de-
fines the crash code returned by the kernel after mounting and

using the image. The third column defines the action to be executed

after mounting the image to provoke the crash. The last column

defines the concrete flaw detected by the image by assigning a

CVE. All images can be downloaded at our project website: https:

//www.cs1.tf .fau.de/research/system-security-group/refuzz/. The

image number is used to identify the image name with the pattern

panic_{}.vhd.

Crash Code Action to Crash CVE

3 0x149 open folder CVE-2022-21892

5 0x149 open folder CVE-2022-21892

13 0x149 open folder CVE-2022-21892

17 0x139 open folder CVE-2022-21892

20 0x149 open folder CVE-2022-21892

21 0x149 open folder CVE-2022-21892

1 0x50, 0x149

open two folders

CVE-2022-21928

and a file

4 0x149 open folder CVE-2022-21958

6 0x50 mount file system CVE-2022-21958

7 0x149 open folder CVE-2022-21958

8 0x149 open folder CVE-2022-21958

9 0x149 open folder CVE-2022-21958

12 0x149 open folder CVE-2022-21958

15 0x50, 0x149 open folder CVE-2022-21958

16 0x50, 0x149

open folder or

CVE-2022-21958

mount file system

19 0x149 open folder CVE-2022-21958

23 0x50, 0x149 mount file system CVE-2022-21958

24 0x149 mount file system CVE-2022-21958

10 0x1E open folder CVE-2022-21959

11 0x149 open folder CVE-2022-21960

14 0x50, 0x149 open folder CVE-2022-21961

27 0x50 open file CVE-2022-21961

29 0x50 open file CVE-2022-21961

2 0x139, 0x149 open file CVE-2022-21962

18 0x50, 0x139, 0x149 open file CVE-2022-21962

22 0x50 open folder CVE-2022-21963

25 0x50 mount file system CVE-2022-21963

https://www.cs1.tf.fau.de/research/system-security-group/refuzz/
https://www.cs1.tf.fau.de/research/system-security-group/refuzz/

	Abstract
	1 Introduction
	1.1 Threat Model
	1.2 Related Work
	1.3 Our Contribution

	2 Background
	2.1 ReFS
	2.2 kAFL

	3 Design Concepts
	4 Implementation
	4.1 ReFS Mutator
	4.2 Fuzzer Agent
	4.3 File System Action Mutator
	4.4 Other Modifications

	5 Evaluation
	5.1 Performance
	5.2 Found Bugs
	5.3 Comparison with other Fuzzers

	6 Conclusion
	Acknowledgments
	References
	A Resulting Dataset

