
INIL | Université de Lausanne Ecole des sciences criminelles

Handling Error and Uncertainty in Forensic Computing

Eoghan Casey

University of Lausanne, Digital Forensic Science

Live de saine Ecole des sciences criminelles Digitalised Traceability Rising Rapidly

Digital Evidence Gives False Sense of Certainty

Geolocation / movements

Multimedia / social network

Work / professional

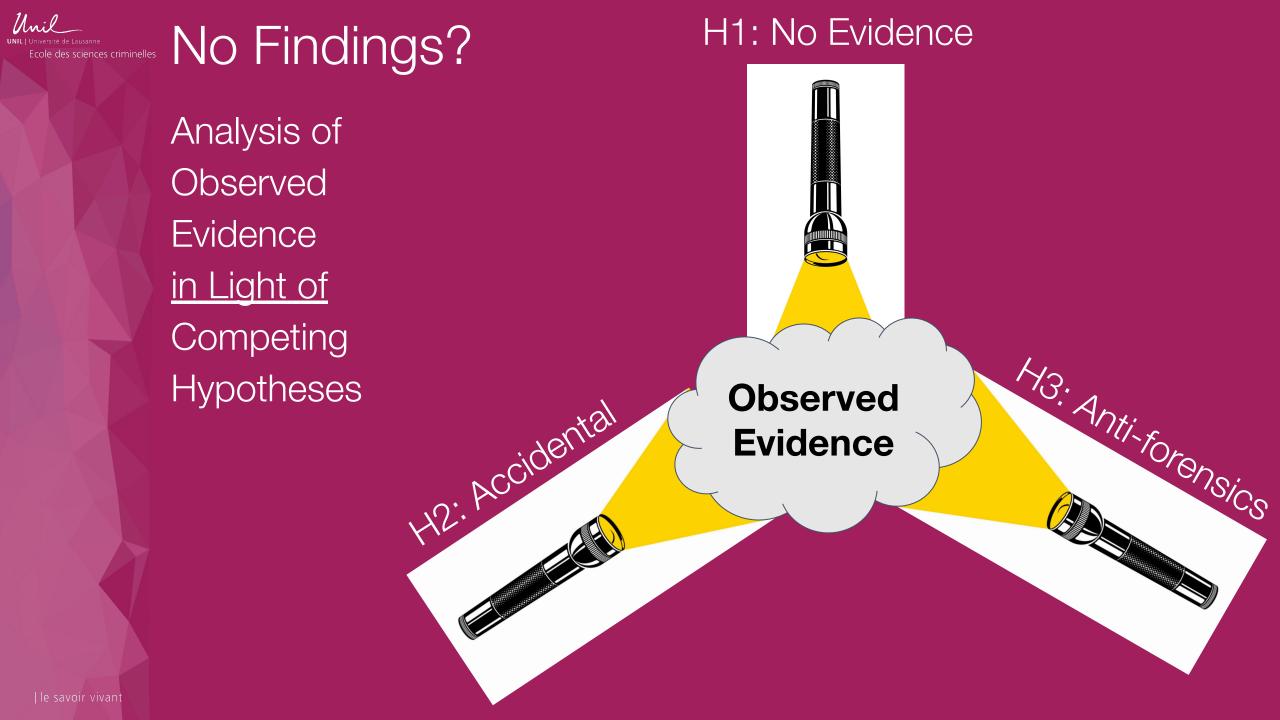
Smarthome / IoT

Dynamic biometrics

Digital fingerprint

Face DNA

Love des sciences criminelles Uncertainty in Forensic Computing


You are observing results of an event, not the event itself

Forensic Computing:

× DOES NOT determine the cause of events

DOES give indications of how digital evidence measures when different causes are considered

?? DISCUSS: Analysis of Competing Hypotheses ;;

Line Line Ecole des sciences criminelles Pierre Margot

Since it is not possible to go back in time, we can only construct a model that is descriptive of a given crime scenario, supported by what is observed.

This is not a general model, but a specific retrodictive model that can only be probabilistic in nature. In the majority of cases, the quality of the vestige is such that it is incomplete, imperfect and degraded by time passing, and these losses increase uncertainty or may support only approximations about the past event.

Traceology, the bedrock of forensic science and its associated semantics by *Pierre Margot in* <u>The Routledge International Handbook of Forensic Intelligence and Criminology</u>

Intro to Case Assessment & Interpretation

Stage

Activities

1. Observation

Make initial observations

- 2. Hypothesis generation
- 3. Inference to the best explanation
- 4. Prediction of likely observations
- 5. "Second Phase" observation
- 6. Strength of evidence assignation
- 7. Communication

Generate a set of plausible hypotheses (initial observations, case circumstances)

Rank the hypotheses (initial observations, current knowledge, past experience)

Predict likelihoods for the range of possible future observations (postulating that each of the hypotheses were true)

Search for predicted likely observations

Assign likelihood values to the observed digital evidence (in light of each hypothesis / proposition)

Express evaluative opinions

NIL | Université de Lausanne Ecole des sciences criminelles

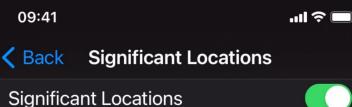
Are you Asking the Correct Question?

Considering Plausible Alternative Explanations

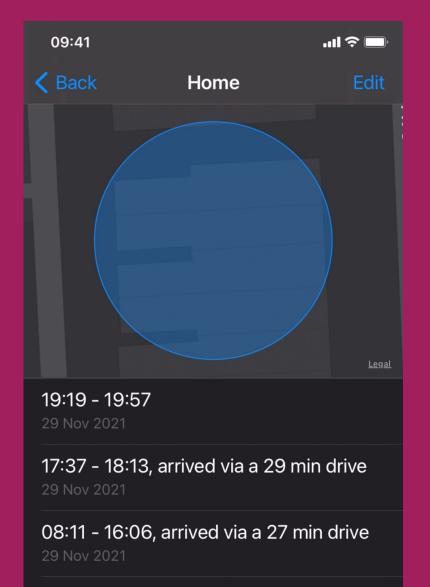
Molina's phone & car were near the scene at the time of the crime

Murder - shooting
 Video - white Honda vehicle registered to Molina
 Google - Android logged into Molina's account was in the area

Consider alternative explanations...



Significant Locations Ecole des sciences criminelles



Allow your iPhone to learn places significant to you in order to provide useful location-related information in Maps, Calendar, Photos and more. Significant Locations are encrypted and cannot be read by Apple. About Location Services & Privacy...

MY PLACES

UNIL | Université de Lausanne

Home 1 location, 12 Jul 2020 - 29 Nov 2021	>
HISTORY	
Towson Maryland 7 locations, 6 Oct 2021 - 29 Nov 2021	>
Baltimore Maryland 33 locations, 20 Jan 2020 - 29 Nov 2021	>
Lutherville Timonium Maryland	>

17:24 - 07:44, arrived via a 10 min drive 28 Nov 2021 - 29 Nov 2021

10

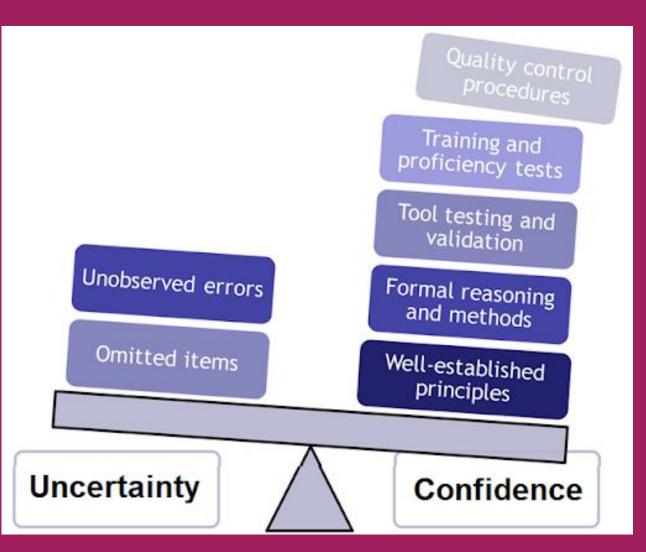
UNIL LAUVESTEE de Lausance Ecole des sciences criminelles Frequent Locations History (FLH)

- ♦ A place where the device visited at least 2 times
 > and remained at the place for some time
 - \succ and remained at the place for some time
- ✤ FLH entry created 24 72 hours after the 2nd visit
- ✤ FLH entry details:
 - ≻ Latitude
 - ≻ Longitude
 - ≻ Confidence
 - ➤ Uncertainty
 - ➤ Entry Timestamp*
 - ≻Exit Timestamp*
 - ≻Update Timestamp

* Entry and Exit Timestamps are not the precise time that a place was visited, but are a value approximately three minutes to one hour after the actual time of entry and exit.

"Frequent Location 58 places the defendant's iPhone at the scene of the murder at the time of the murder."

The center point of Frequent Location 58 was at about 326 Harvard Street, two doors down from the scene of the murder, with a radius, or "uncertainty," of 43 meters (143 feet), which encapsulates the crime scene at 332 Harvard Street


NIL | Université de Lausanne Ecole des sciences criminelles

Are you Correctly Observing Digital Evidence?

Mitigating Errors, Weaknesses & Uncertainty

UNIL UNVESSE de LAUSAINE Ecole des sciences criminelles ASTM - Error Mitigation Analysis

- ✤ Tools
- Personnel
- Procedures
- Documentation
- Oversight
- Reasoning
- Defined principles
 & processes

UNIL | Université de Lausanne Ecole des sciences criminelles

SOLVE-IT

https://github.com/SOLVE-IT-DF

Systematic Objective-based Listing of Various Established (Digital) Investigation Techniques

MITRE ATT&CK MODEL

Reconnaissance	Resource Development 8 techniques	Initial Access 10 techniques	Execution 14 techniques	Persistence 20 techniques	Privilege Escalation 14 techniques	Defense Evasion 44 techniques	Credential Access 17 techniques	Discovery 32 techniques	Lateral Movement 9 techniques	Col 17 te
Active Scanning (3)	Acquire Access	Content Injection	Cloud Administration	Account Manipulation (7)	Abuse Elevation	Abuse Elevation Control Mechanism (6)	Adversary-in- the-Middle (4)	Account Discovery (4)	Exploitation of Remote	Adver the-M
Gather Victim Host Information (4)	Acquire Infrastructure (8)	Drive-by	Command	BITS Jobs	Control Mechanism (6)	Access Token	Brute Force (4)	Application Window Discovery	Services	Archiv
		Compromise	Command and			Manipulation (5)			Internal	Collec
Gather Victim Identity Information (3)	Compromise Accounts (3)	Exploit Public-	Scripting II Interpreter (11)	Boot or Logon Autostart II	Access Token Manipulation (5)	BITS Jobs	Credentials from	Browser Information Discovery	Spearphishing	Data (
Gather Victim	Compromise "	Facing Application	Container	Execution (14)	Account	Build Image on Host	Password Stores (6)	Cloud Infrastructure	Lateral Tool Transfer	Audio
Network II Information (6)	Infrastructure (8)	External	Administration Command	Boot or Logon Initialization	Manipulation (7)	Debugger Evasion	Exploitation	Discovery	Remote	Autom
Gather Victim Org	Develop Capabilities (4)	Remote Services	Deploy Container	Scripts (5)	Boot or Logon Autostart	Deobfuscate/Decode	for Credential Access	Cloud Service Dashboard	Service Session	Brows
Information (4)	Establish	Hardware	Exploitation for	Browser Extensions	Execution (14)	Files or Information	Forced	Cloud Service	Hijacking (2)	Sessic Hijack
Phishing for	Accounts (3)	Additions	Client Execution	Compromise	Boot or Logon Initialization	Deploy Container	Authentication	Discovery	Remote	Clipbo
Information (4)	Obtain	Phishing (4)	Inter-Process	Host Software	Scripts (5)	Direct Volume Access	Forge Web	Cloud Storage Object	Services (8)	
Search Closed Sources (2)	Capabilities (7)	Replication	Communication (3)	Binary	Create or	Domain or Tenant	Credentials (2)	Discovery	Replication Through	Data fi Cloud
Search Open	Stage Capabilities (6)	Through Removable	Native API	Create Account (3)	Modify System II Process (5)	Policy Modification (2)	Input Capture (4)	Container and Resource Discovery	Removable Media	Data f
Technical II Databases (5)	. (0)	Media	Scheduled Task/Job (5)	Create or	Domain or	Execution Guardrails (2)	Modify	Debugger Evasion	Software	Config Repos
Search Open		Supply Chain	Serverless	Modify System II	Tenant Policy II	Exploitation for	Authentication II	Device Driver	Deployment Tools	
Websites/Domains (3)		Compromise (3)	Execution	Process (5)	Modification (2)	Defense Evasion	Process (9)	Discovery		Data fi Inform
Search Victim-Owned		Trusted Relationship	Shared Modules	Event Triggered Execution (17)	Escape to Host	File and Directory	Multi-Factor Authentication	Domain Trust	Taint Shared Content	Repos
Websites			0.0	E L I	Event Triggered	Permissions II	Interception	Discovery		Data f

MITRE ATT&CK MODEL

TECHNIQUES 🗸

Home > Techniques > Enterprise > Drive-by Compromise

Drive-by Compromise

Adversaries may gain access to a system through a user visiting a website over the normal course of browsing. With this technique, the user's web browser is typically targeted for exploitation, but adversaries may also use compromised websites for non-exploitation behavior such as acquiring Application Access Token.

Multiple ways of delivering exploit code to a browser exist (i.e., Drive-by Target), including:

- A legitimate website is compromised where adversaries have injected some form of malicious code such as JavaScript, iFrames, and cross-site scripting
- Script files served to a legitimate website from a publicly writeable cloud storage bucket are modified by an adversary
- Malicious ads are paid for and served through legitimate ad providers (i.e., Malvertising)
- Built-in web application interfaces are leveraged for the insertion of any other kind of object that can be used to display web content or contain a script that executes on the visiting client (e.g. forum posts, comments, and other user controllable web content).

Often the website used by an adversary is one visited by a specific community, such as government, a particular industry, or region, where the goal is to compromise a specific user or set of users based on a shared interest. This kind of targeted campaign is often referred to a strategic

ID:	T1	1	89	
10.			0,	

Sub-techniques: No sub-techniques

- (i) Tactic: Initial Access
- (i) Platforms: Identity Provider, Linux, Windows, macOS

Contributors: Jeff Sakowicz, Microsoft Identity Developer Platform Services (IDPM Services); Saisha Agrawal, Microsoft Threat Intelligent Center (MSTIC) Version: 1.6 Created: 18 April 2018

Last Modified: 15 October 2024

Version Permalink

ential ess	Discovery	Lateral Movement	Col
nniques	32 techniques	9 techniques	17 te
ry-in- dle ₍₄₎ II	Account Discovery (4)	Exploitation of Remote	Advers
	Application Window Discovery	Services	Archiv
ials	Browser Information	Internal Spearphishing	Collec Data (S
rd ^{II}	Discovery Cloud Infrastructure	Lateral Tool Transfer	Audio
⁵⁾	Discovery	Remote	Autom
ential	Cloud Service Dashboard	Service	Brows
	Cloud Service	Hijacking (2)	Sessic
ication	Discovery	Remote Services (8)	Clipbo
leb ials (2)	Cloud Storage Object Discovery	Replication	Data f
	Container and	Through Removable	Cloud
(4)	Resource Discovery	Media	Data fi Confic
ication II	Debugger Evasion	Software Deployment	Repos
(9)	Device Driver Discovery	Tools	Data fi Inform
ctor ication	Domain Trust	Taint Shared Content	Repos
tion	Discovery		Data f

MITRE ATT&CK MODEL

	aissance	Resource Development	Initial Access	Execution	Persistence	Privilege Escalation	Defense Evasion	Credential Access	Discovery 32 techniques	Lateral Movement 9 techniques	Col 17 te
Mitig	ations							ary-in- ddle ₍₄₎ II	Account Discovery (4)	Exploitation of Remote	Adver: the-Mi
.									Application Window Discovery	Services	Archiv
ID Mitigation Description Discovery Information Spearphish											Collec Data
M1048	Application	Browser sandbox	xes can be used to	mitigate some of t	ne impact of exploita	ation, but sandbox	escapes may still exist. ^{[68][6}	the second se	Discovery	Lateral Tool	Audio
	Isolation	Other types of vi	rtualization and an	plication microsegr	mentation may also r	nitigate the impac	t of client-side exploitation.	(6)	Cloud Infrastructure Discovery	Transfer	Autom
	and Sandboxing	The ricks of addi			elementation may sti			ation dential	Cloud Service Dashboard	Remote Service Session	Collec Brows
M1050	Exploit Protection						ler Exploit Guard (WDEG) ar n behavior. ^[70] Control flow	tication	Cloud Service Discovery	Hijacking ₍₂₎ Remote Services ₍₈₎	Sessic Hijack Clipbo
					and stop a software ication binary for co		rring. ^[71] Many of these	Neb tials ₍₂₎ "	Cloud Storage Object Discovery	Replication Through	Data fi
M1021	Restrict						ting in the first place.	e ₍₄₎ "	Container and Resource Discovery	Removable Media	Data fi Config
	Web-Based							tication u	Debugger Evasion	Software Deployment	Repos
	Content	exploitation proc	•••••••••••••••••••••••••••••••••••••••	prevent the execut	ion of JavaScript tha	at may commonly i	be used during the	S (9)	Device Driver Discovery	Tools	Data fi
		exploration proc						actor	Domain Trust	Taint Shared Content	Repos
M1051	Update			ot updated can help	prevent the exploit	phase of this techr	ique. Use modern browsers		Discovery		Data f
	Software	with security fea	tures turned on.								

Detection

Data Source Data Component Detects		ID	Data Source	Data Component	Detects
------------------------------------	--	----	-------------	----------------	---------

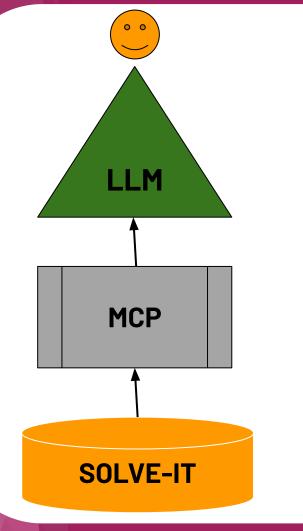
Can we construct something similar for digital forensics **and** is it useful?

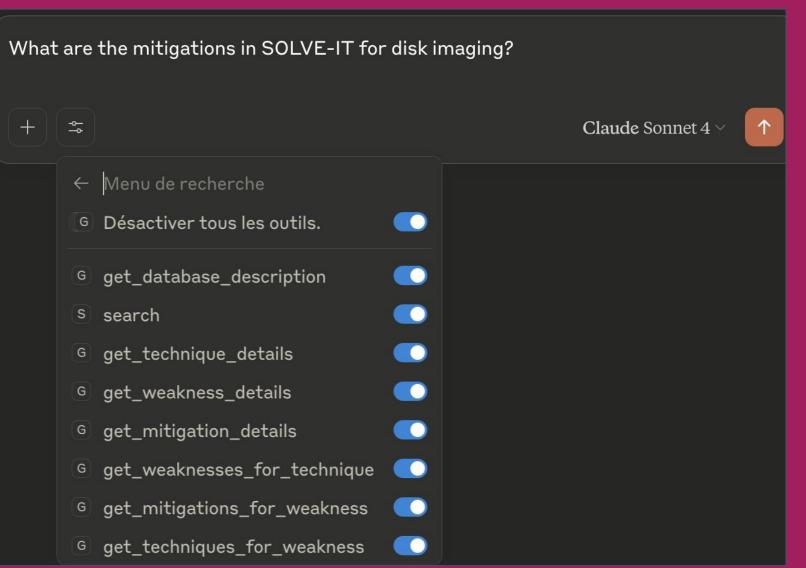
Systematic Objective-based Listing of Various Established (digital) Investigation Techniques

Hundreds of techniques with associated weaknesses and mitigations

	Survey	Preserve	Prioritise	Acquire	Gain Access	Process Storage Format	Perform Data Reduction	Locate Relevant Digital Artefacts	Extract Partition and File System Information	Extract Operating System Feature Information	Extract Application-based Information	Examine data at the file- level	Establish Identities	Visualisation	Event Reconstruction	Research	Reporting
	Crime scene searching T1005	Place device in faraday environment T1010	Triage T1001	Disk imaging T1002	Key recovery from memory T1031	Disk image hash verification T1042	Privileged material protection T1046	Keyword searching T1049	Identify partitions T1059	Content indexer examination (OS) T1065	Browser examination T1069	Database examination T1071	Extraction of user accounts T1084	Virtualise suspect system for previewing T1103	Timeline analysis T1086	Source code review T1089	Bookmarking T1091
	Digital sniffer dogs T1006	Evidence bags T1011		Memory imaging T1003	Side channel T1032	Forensic image format decoding T1043	Hash matching (reduce) T1047	Hash matching (locate) T1050	Process file system structures T1060	Log file examination (US) T1066	Email examination T1070	Audio content analysis T1079	Identify conflation T1085		Geospatial analysis T1087	Experimentation T1090	Produce bookmark-based automated report T1092
	SyncTriage-based approach T1007	Hardware write blockers T1012		Selective data acquisition T1004	Extraction of account details from an accessible device T1033	Mobile backup decoding T1044	Privacy protection via partial processing T1048	Fuzzy hash matching T1051	Non-allocated file recovery T1061	Cloud synchronisation feature examination (OS) T1067	Chat app examination T1072	Video content aralysis T1080			Connection analysis T1088	Instrumentation T1095	Write expert report T1093
	Profiling network traffic T1008	Software write blockers T1013		Privacy preserving selective extraction T1015	Brute force attack T1034	Decode standard archive format T1045		Timeline generation T1052	Decryption of encrypted file systems/volumes T1062	Recently used file identification (CS) T1068	Calendar app examination T1073	Image content analysis T1081				Cell site survey T1101	Disclosure T1094
	Locate cloud account identifiers T1009	Chain of custody documentation T1014		Live data collection T1016	Dictionary attack T1035	Decode data from image from unmanaged NAND T1102		Entity extraction T1053	Identify file types T1063	Memory examination (OS- level) T1083	Social network app examination T1074	Document content analysis T1082					
				Network packet capture T1017	Smudge attack T1035			Content review for relevant material T1054	File carving T1064	Run programs identification (OS) T1096	Maps/travel app examination T1075	File repair with grafting T1099					
				Remote data collection T1018	Obtain password from suspect T1037			File system content inspection T1055		Installed programs identification (CS) T1097	Photos app examination T1077	EXIF data examination T1100					
				Mcbile backup extraction T1019	Rainbow tables T1038			Entity connection identification T1056		User account analysis (OS) T1098	Cloud sync app examination T1078	Deep Fake Detection (Video) T1106					
				Mobile file system extraction T1020	App downgrade T1039			Steganography detection T1057			Memory examination (application-level) T1105						
				Mobile device screenshot based capture T1022	Use mobile device exploit T1040			Mismatched file extension detection T1058			Health/Fitness app examination T1107						
				Cloud data collection using account details T1023	Pin2Pwn T1041						Reminders app examination T1108						
				Cloud data collection via request T1024							Payment app examination T1109						
				Writing data to a forensic image format T1025													
				Writing data in standard archive format T1026													
				Data read using JTAG T1027													
X				Chip-off T1028													
				Data read from desoldered eMMC T1029		Gr	owi	na	com	nmu	nity	of	con	trib	uto	rs.	
				Data read from unmanages NAND T1030		Yo		an t			,						
				Collect data using open source intelligence					UU .								

SOLVE-IT Supporting Forensic Tools


Msg: Browser history log doesn't contain expected browser history entries


Expert UI	Project: Hansken Fundamentals EN	Message for the user Notifications 0 - English - Tactical -
4		Selected images:
6 traces matc 0-0-b-0-6-0- 0-0-b-0-6-0-	hes query and(term(type:'chatLog'),not(term(type:'chat'))), it has allocated child ch query and(term(type:'browserHistoryLog'),not(term(type:'browserHistory'))), 3 o -6-2-11-0-2 256.4 kiB file,browserHistoryLog,origin application/x-chrome-cach -6-2-13-2a-0-0-0-1-2 256.4 kiB file,browserHistoryLog,origin application/x-chrom -6-2-13-7-2 256.4 kiB file,browserHistoryLog,origin application/x-chrome-cach	f them have no allocated children: e AD1/Users/chapp/Library/Application Support/Google/Chrome/ShaderCache/GPUCache/index e-cache AD1/Users/chapp/Library/Application Support/Google/Chrome/Default/Storage/ext/nmmhkkegccagd]
Mitig Refe <u>http</u>	akness W1085 "Missing messages from the live gations ["M1054", "M1027", "M1055", "M1056"], Ferences ["New msgstore – Who 'Dis? A Look At os://thebinaryhick.blog/2022/06/09/new-msgstore akness	

Mitigations...

Growing community of contributors... You can too!

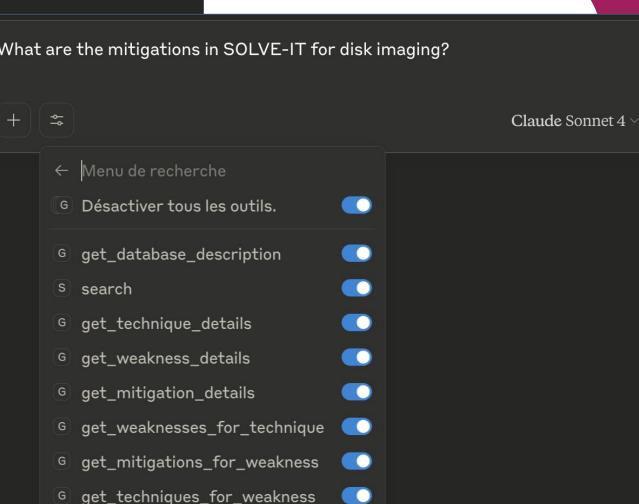
Helping you learn, use, and develop SOLVE-IT

Helping you learn, use, and develop SOLVE-IT

Based on my search of the SOLVE-IT knowledge base, here are the mitigations for disk imaging techniques:

Core Disk Imaging Mitigations (T1002)

Data Integrity & Completeness

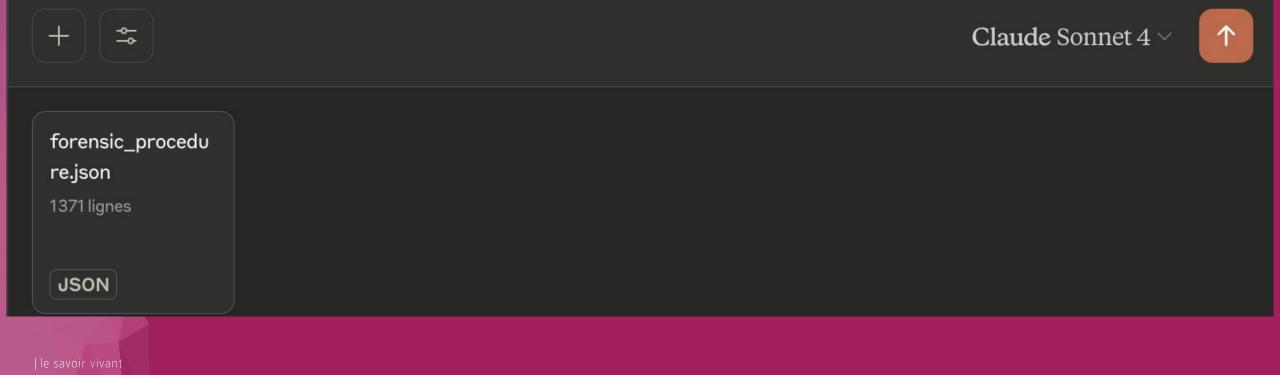

- M1003 Check image size corresponds with drive label
- **M1004** Check hash of image matches hash of source device
- M1009 Ensure forensic format preserves original raw data
- **M1102** Apply techniques to read remapped sectors (G-Lists)

Write Protection

- M1007 Use hardware write blocker
- M1008 Use software write blocker

Hash Verification Mitigations (T1042)

Hash Validation & Security


What are the mitigations in SOLVE-IT for disk imaging?

Helping you learn, use, and develop SOLVE-IT

Ex	pert UI	Project: Hansken F	Fundamentals EN			♦ ✓ Message for the user Notifications • ✓ English ✓ Tactical ✓
2						Selected images: 1/3 -
*	245798 traces m	<pre>natch query term(data.raw.mimeType:</pre>	'application/octet-stream'):			
	type:					
	245798	origin 735	6 url	19	thumbnailArchive	
	14744	file 206	0 picture	4	video	
	7356	browserHistory 2	5 search	1	document	
Q	7356	browserHistoryLog 2	2 compressed			
	file.extensio	on:				
1	2089		7 indexpositions	1	44	
	368	isdata	7 sqlite3-wal	1	50	
	293	dylib	7 sqlitedb-shm	1	501	
	222		63	1	59	
10000	135	db-shm	6 sig	1	6	
	119	cfs	6 sqlite	1	68	
	119	gen	5 tracev3	1	7	
>	103	list	4 c3b	1	75	
	94	db-wal	4 crc	1	8	
Land 🗸	89	cshelpindex	4 htbl		abcddb-shm	
	85	index	4 iconmappack	1	abcddb-wal	
	78	scpt	4 indexscores	1	allowlist	
	70	sqlite-shm	4 pma	1	archive	
	65	db	4 shadowindextermids	1	bf2-head	
幸	63	50	4 sqlitedb-wal	1	chunklist	
1042512	58	pak	4 state	1	components	
8	57	sqlite-wal	4 triemap	1	ddsource	
60	54	stats	3 70	1	doc	
1	45	bin	3 bom	1	epsql-shm	
	38	nib	3 jetpack	1	epsql-wal	
	37	chrono-timeline	3 jnilib	1	fdb	
%	37	dat	3 kgdb-shm	1	fdt	
	32	asl	3 loc	1	fdx	
JC .	32	styl	3 plj	1	fnm	
*	20	header	3 rdb	1	iconcache	
	20	offsets	3 rsrc	1	ids	
			3 shadowindexcompactdirectory		1 kb	
-	18	iconconfigpack	3 shadowindexpositiontable		1 kbdx	
	18	icondatapack	3 storedata-shm	1	kvcache	
	47	inden de l'adate a	5 +··+		1.	

Helping you learn, use, and develop SOLVE-IT

Use SOLVE-IT to analyse this forensic procedure for weaknesses and make recommendations to mitigate those weaknesses

es criminelles SOLVE-IT Design Concepts

The goal that one might wish to achieve in a digital forensic investigation, e.g. acquire data or gain access.

Techniques

How one might achieve an objective in digital forensics by performing an action, e.g. for the objective of 'acquire data', the technique 'disk imaging' could be used.

weaknesses

These represent potential problems resulting from using a technique. They are classified according to the error categories in ASTM E3016-18.

Something that can be done to prevent a weakness from occurring, or to minimise its impact.

Unit Universite de Lausanne Ecole des sciences criminelles Uncertainty in Digital Traces

Incompleteness (INCOMP) Misinterpretation (MISINT) Inaccuracy (INAC) > exist (INAC-EX) > alteration (INAC-ALT) \succ association (INAC-AS) \succ corruption (INAC-COR)

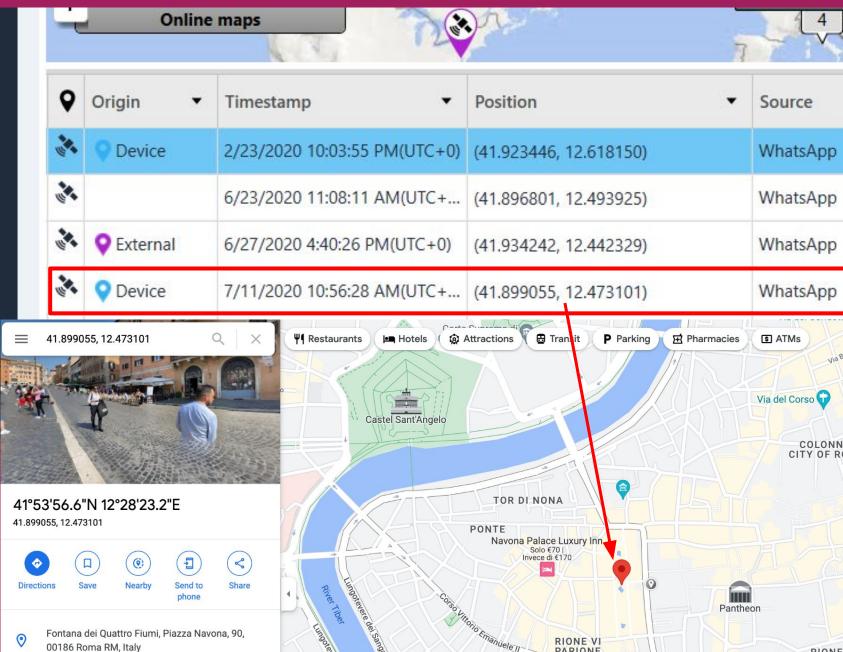
An abstract model for digital forensic analysis tools - A foundation for systematic error mitigation analysis Hargreaves, Nelson, Casey (2024) DFRWS EU 2024 https://doi.org/10.1016/j.fsidi.2023.301679

NIL | Université de Lausanne Ecole des sciences criminelles

Are you Answering the Question Correctly?

Evaluating Plausible Alternative Explanations

I am an expert in forensic analysis of mobile devices
 I extracted geolocation data from the mobile device
 The geolocation data was generated on the mobile device
 Therefore, the device was at the given location


INCORRECT: presents interpretation as fact

Are there any alternative hypotheses?

Thilly True to a sciences criminelles Audience Poll: Where was device on 7/11/20?

- Device Locations (498) (45)
- 🕨 🙈 Journeys (8) (0 waypoints)
- Q Locations (498) (45)
 - Apple Maps (22)
 - Apple Photos (45) (45)
 - Calendar (9)
 - Native (408)
 - > 9 Native Messages (4)
 - Recents (4)
 - Weather (1)
 - WhatsApp (5)

1) In Piazza Navona
 2) At another location
 3) More A/1 than B/2

UNIL J UNIVErsité de Lausanne Ecole des sciences criminelles Google Location Services

COURT: "[prosecution] failed to meet their burden of demonstrating that the science underlying Google location services has gained general acceptance in the in the relevant scientific community."

<u>Oquendo's attorney</u>: "We're just asking for the courtroom to determine if this is good science"

Body of Noel Alkaramla found inside a suitcase

✤ Timestamps

- 1. I am an expert in forensic analysis of computers
- 2. I extracted file system data with creation dates
- 3. The creation date was generated on a the computer
- 4. Therefore, the file was created at that time
- Observation: the file creation timestamp is 2 Dec 2024
- Interpretation: the file was created on 2 Dec 2024

What are some alternative hypotheses?

Exif Temporal Incongruities

Device timestamp: December 6 GPS timestamp: December 7

🗆 General						
Inode Number	0xE3639					
Owner GID	0x3FF					
Owner UID	0x3FF					
File size	4254778 Bytes					
Chunks	1					
Offsets						
Data offset	0x4AC054000					
🗆 Date & Time						
Creation time	06.12.2018 18:13 UTC+0)					
Modify time	06.12.2018 18:13(UTC+0)					
Last access time	06.12.2018 18:13(UTC+0)					
EXIF						
GPSVersionID	Tableau de Byte[]					
GPSLatitudeRef	N					
GPSLatitude	41, 52, 3					
GPSLongitudeRef	E					
GPSLongitude	12, 29, 21					
GPSAltitudeRef	0					
GPSAltitude	74					
GPSTimeStamp	18, 1, 37					
GPSDateStamp	2018:12:07					

Init Cole des sciences criminelles Reminder: Case Assessment & Interpretation

Stage

Activities

1. Observation

Make initial observations

- 2. Hypothesis generation
- 3. Inference to the best explanation
- 4. Prediction of likely observations
- 5. "Second Phase" observation
- 6. Strength of evidence assignation
- 7. Communication

Generate a set of plausible hypotheses (initial observations, case circumstances)

Rank the hypotheses (initial observations, current knowledge, past experience)

Predict likelihoods for the range of possible future observations (postulating that each of the hypotheses were true)

Search for predicted likely observations

Assign likelihood values to the observed digital evidence (in light of each hypothesis / proposition)

Express evaluative opinions

LI UNIVERSITE E LA LAUSANTE UK FSR 118 - Evaluative Opinions

Principles: Balance, logic, robustness, transparency

LR Order of Magnitude Verbal Scale (In my opinion the observations...)

c. 1 - 3	are no more probable if [proposition A] rather than [proposition B] were true. Therefore, the observations do not assist in addressing which of the two propositions is true.
c. 4 - 10	are slightly more probable if [proposition A] rather than [proposition B] were true.
c. 10–100	are more probable if [proposition A] rather than [proposition B] were true.
c. 100 – 1000	are much more probable if [proposition A] rather than [proposition B] were true.

Do not make conclusory statements
the SUBJECT did ABC
the person in the photo is the VICTIM
the video contains child pornography

Do not make vague statements about uncertainty *x* seems to be ABC *x* appears to be ABC *x* could be ABC

UNIL | UNIVERSITE de Lausanne Ecole des sciences criminelles Avoid Obscured Inferences

"I have performed data extraction using the tools set out in table 2 and obtained the observations in table 2. There were no communications between Mr X and Mr Z."

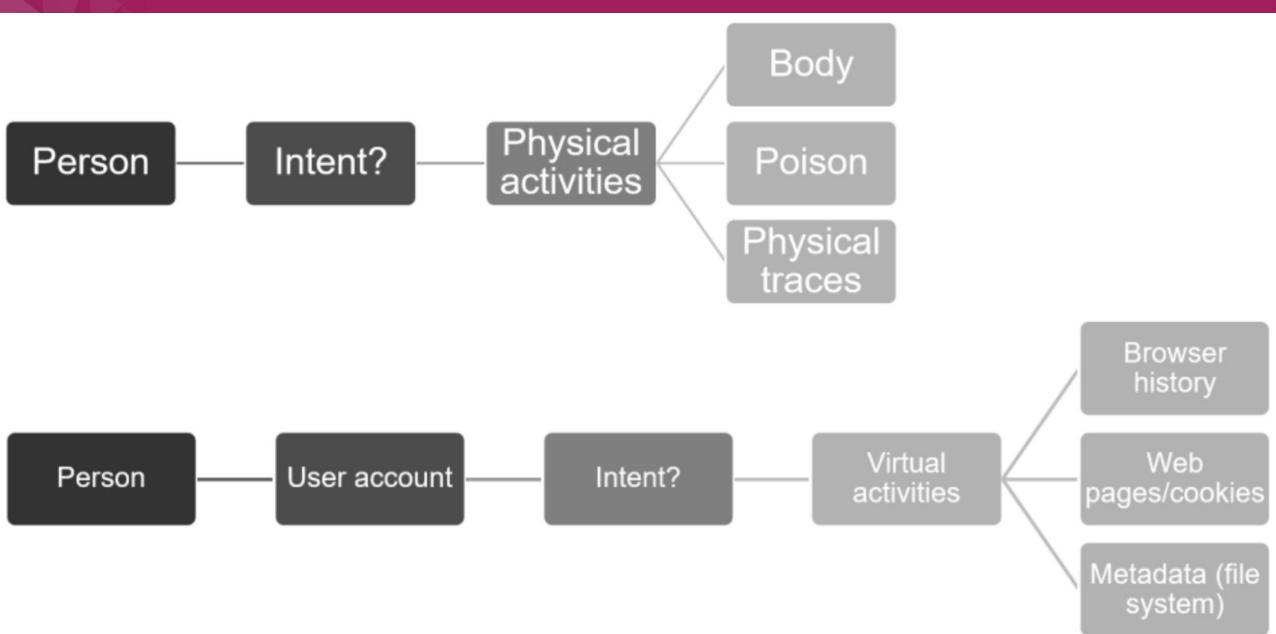
This statement could be read as a series of facts

- However, this is an obscured inference:
 - 1. The assertion being made is that there were no communications between Mr X and Mr Z
 - 2. The person making the assertion knows only that their extraction and analysis procedures did not find any communications between Mr X and Mr Z,
 - 3. Therefore, the assertion that there were none does not come within the definition of fact.

(Adapted from FSR-C-118 Issue 1, February 2021)

Inferring activity from observed traces

Fact or interpretation?


Considered together, the observed traces resulted from user account "JD" opening each of the photos and copying the files to external storage media.

Considered together, the observed Web history and downloaded files resulted from user account "JD" searching for "make a bomb," visiting each of the websites and downloading bomb making instructions.

- Evaluate the observations, not imagined possibilities
 New observations may change evaluation
- Audience is a non-specialist (ex. judge, decision-maker)
 They do not have expertise to evaluate traces
 - \succ They need clearly expressed evaluation of traces
 - > They understand verbal better than numbers
- Numerical evaluation is more precise than verbal
 LR scale has verbal equivalent
 - ➤ C-Scale has verbal equivalent
- ♦ Copy the language in the scale, do not tweak
 ▶ Do not transpose the conditional

Line des sciences criminelles Inferring Intent from Digital Evidence

Misinterpretation of Backdating

- Statement of certainty
 - User X backdated system on 18 November 2018
- Not expressed in relative terms
 - H1 highly probable. H2 low probability. H3 improbable.
- Microsoft Windows file tunneling
 - New content saved with old metadata
 - No trace of deliberate user action

UNIL JUNIVERSITE de Lausanne Ecole des sciences criminelles C-Scale: Strength of Digital Evidence

Evaluate evidence in light of each hypothesis

C-Value	Illustrative Indicators
C0	Evidence contradicts known facts (extreme dissonance of observations in light of the hypothesis).
C1	Evidence is highly questionable (very strong dissonance of observations in light of the hypothesis).
C2	Only one source of evidence that is not difficult to tamper with.
C3	The source(s) of evidence are more difficult to tamper with but there is not enough evidence to support a firm conclusion or there are unexplained inconsistencies (dissonance) in the observed evidence in light of the hypothesis.
C4	The source(s) of evidence are much more difficult to tamper with evidence from multiple, independent sources (strong harmonious observations in light of the hypothesis).
C5	The source(s) of evidence are very much more difficult to tamper with and evidence from multiple, independent sources (very strong harmonious observations in light of the hypothesis). However, small uncertainties exist (e.g. temporal error, data loss).
C6 le savoir vivant	The evidence is tamper proof (or tamper evident) and extremely strong harmonious evidence in light of the hypothesis unquestionable.