Searching for relationships between forensic artifacts and their attributes

Women in Forensic Computing Workshop – March 28, 2022 Eva Marková Pavol Jozef Šafárik Univesrity in Košice, Faculty of Science E-mail: <u>eva.markova@upjs.sk</u>

- PhD. Student at Pavol Jozef Šafárik University, Košice, Slovakia
- Member of CSIRT-UPJS team first accredited academic CSIRT team in Slovakia
 - Solving security incidents
 - Education
 - Research
 - Spreading security awareness

https://csirt.upjs.sk/#/en/

Motivation

Description of model case

- The Stolen Szechuan Sauce
- Used to teach digital forensics, incident response and threat hunting
- Analysis of unauthorized intrusion into the network of company CITADEL
- Task identify whether
 - malicious applications have been installed on the system
 - any information has been created, modified, or deleted in the system
 - data has been leaked

Preprocessing of data

- Use of the disk image of the subject server (DC01-E01) as input
- 1. Creation of a timeline of the image using Plaso tool
- 2. Conversion of the plaso file to the l2tcsv format 17 default fields
- 3. Division of records according to values in the field source 11 dataframes (the most important file, evt, reg)
- 4. Extraction of additional attributes
- 5. Aggregation

Filename

7603	NTFS:\Windows\SysWOW64\ctl3d32.dll
7604	NTFS:\Windows\WinSxS\x86_microsoft-windows-ctl3d32_31bf3856ad364e35_6.3.9600.16384_none_5ec8aaef6fba350f\ctl3d32.dll
7605	NTFS:\Windows\SysWOW64\stdole32.tlb
7606	NTFS:\Windows\System32\stdole32.tlb
7607	NTFS:\Windows\WinSxS\amd64_microsoft-windows-oion-legacy-stdole32_31bf3856ad364e35_6.3.9600.16384_none_d28f0f52ebefe7cd\stdole32.tlb
	•••
1263782	NTFS:\Windows\WinSXS\wow64_microsoft-windows-pman-pluginworker-v2_31bf3856ad364e35_6.3.9600.16384_none_9289c385fafccf5c\pspluginwkr.dll
1263783	NTFS:\Windows\System32\WindowsPowerShell\v1.0\pspluginwkr.dll
1263784	NTFS:\Windows\WinSXS\amd64_microsoft-windows-pman-pluginworker-v2_31bf3856ad364e35_6.3.9600.16384_none_88351933c69c0d61\pspluginwkr.dll
1263785	NTFS:\Windows\SysWOW64\WindowsPowerShell\v1.0\pspluginwkr.dll
1263786	NTFS:\Windows\WinSXS\wow64_microsoft-windows-pman-pluginworker-v2_31bf3856ad364e35_6.3.9600.16384_none_9289c385fafccf5c\pspluginwkr.dll
Name: file	name, Length: 1256180, dtype: object

	date	time t	imezone	MACB S	source	sourcetype	type	user	host	short	desc	c ve	ersion	filename	inode n	otes	format	extra	
228373	08/22/2013	15:26:10	UTC	В	FILE	NTFS file stat	Creation Time	-	-	\\$MFT 71146-1 \$STANDARD_INFORMATION	NTFS:\\$MFT File reference: 71146-1 Attribute n		2	NTFS:\\$MFT	0	-	mft	attribute_type: 16; file_system_type: NTFS; is	
866929	09/17/2020	16:49:27	UTC M	ACB	FILE	NTFS file stat	Content Modification Time; Creation Time; Last	-	-	\SMFT 56297-1 SFILE_NAME	NTFS:\SMFT File reference: 56297-1 Attribute n		2	NTFS:\\$MFT	0	-	mft	attribute_type: 48; file_attribute_flags: 32;	
662807	09/17/2020	16:47:31	ИТС М	ACB	FILE	NTFS file stat	Content Modification Time; Creation Time; Last	-	-	\SMFT 85590-2 SFILE_NAME	NTFS:\\$MFT File reference: 85590-2 Attribute n		2	NTFS:\\$MFT	0	-	mft	attribute_type: 48; file_attribute_flags: 32;	
1128467	09/17/2020	17:56:11	UTC	М	REG I	Registry Key	Content Modification Time	-	- [HP	KEY_LOCAL_MACHINE\Software\Microsoft\Windows	[HKEY_LOCAL_MACHINE\Software\Microsoft\Windows		2 NTFS:\Windows\System3	2\config\SOFTWARE	78036	- winreg/winr	eg_default	sha256_hash: 9ea369b327a9241abd6ed3f2801218cf3	
867216	09/17/2020	16:49:27	UTC	C .	FILE	NTFS file stat	Metadata Modification Time	-	-	\\$MFT 56355-1 \$STANDARD_INFORMATION	NTFS:\\$MFT File reference: 56355-1 Attribute n		2	NTFS:\SMFT	0		mft	attribute_type: 16; file_system_type: NTFS; is	

Extra

539634file_size: 758; file_system_type: NTFS; is_allocated: True; sha256_hash: 5c2166cf4bb2fb5aee51b6bbcc1bb5b5a2c8bc193c862fc732195e4fbd825c14987903file_size: 29397; file_system_type: NTFS; is_allocated: True; sha256_hash: 0627c02f984d62df6597c315b58971ac00ff24babc10511b0e85a587e91fe3501009580attribute_type: 16; file_system_type: NTFS; is_allocated: True511548attribute_type: 16; file_system_type: NTFS; is_allocated: True681998attribute_type: 48; file_attribute_flags: 268435456; file_system_type: NTFS; is_allocated: TrueName: extra, dtype: objectNTFS; is_allocated: True

Finding relationship between attributes

- Used records related to filesystem
- 843863 records
- For the purpose of analysis we have used about a quarter of records
- Methods:

Clustering methods

K-Means – numeric variables

K-Modes – categorical variables

K-Prototypes – both

K-Modes

м	Α	С	В	source_file	file_stat	NTFS_file_ stat	file_entry _shell	NTFS_USN _change	name	filef	directory	link	dir_appdata	dir_win	dir_user	dir_other
1	0	0	0) 1	. 1	L 0	0	0	None	1	. 0	0	C	1	C	0
0	1	0	1	. 1	. 1	L 0	0	0	None	1	. 0	0	C	1	C	0
0	1	0	1	. 1) 1	0	0	None	0) 0	0	C	0	C	1
0	0	0	1	. 1) 1	0	0	None	0	0 0	0	C	0	C	1
1	0	0	0) 1	. 0) 1	0	0	None	0	0 0	0	C	0	C	1

file_exe	file_gra	file_doc	file_ps	file_other	mft	Ink_shell_ items	olecf_olec f_autom	winreg_ba gmru	usnjrnl	is_allocated1	is_allocated0	size_none	size_Q1	size_Q2	size_Q3	size_Q4
0	0	0	C) 1	0) 0	0	0	0	C	C) 0	0	0	0	0
0	0	0	C) 1	0	0 0	0	0	0	C	C) 0	0	0	0	0
0	0	0	C) 1	1	. 0	0	0	0	C	C) 1	0	0	0	0
0	0	0	C) 1	1	. 0	0	0	0	C	C) 1	0	0	0	0
0	0	0	0) 1	1	. 0	0	0	0	0	C) 1	0	0	0	0

Outlier detection

Local Outlier Factor

- Distance between two boolean vectors: jaccard, kulsinski,...
- Distance between two numeric vectors: euclidean, minkowski,...
- Doesn't work with categorical datasets

Oneclass SVM

• Kernel - RBF, linear, poly, sigmoid

Example of outliers (29)

|--|

0 1 0 1	None	0	0	1	0	0	0	0 653bf59285bb4f514c0b95d3151c529d5678636081778
1 0 0 0	None	0	0	1	0	0	0	0 653bf59285bb4f514c0b95d3151c529d5678636081778
1 1 0 1	None	0	0	1	0	0	0	0 653bf59285bb4f514c0b95d3151c529d5678636081778
0 0 0 1	True	0	0	0	0	1	0	0 691c0a552579e2a312c76ef1ff03029fa5ca4117174df
0 0 0 1	True	0	0	0	0	1	0	0 1b8b4a266b84aebd6f18bb87d679a4b08dac25217b7ed
0 1 0 0	True	0	0	0	0	1	0	0 1b8b4a266b84aebd6f18bb87d679a4b08dac25217b7ed
1 0 0 0	True	0	0	0	0	1	0	0 1b8b4a266b84aebd6f18bb87d679a4b08dac25217b7ed
0 1 0 0	True	0	0	0	0	1	0	0 691c0a552579e2a312c76ef1ff03029fa5ca4117174df
1 0 0 0	True	0	0	0	0	1	0	0 691c0a552579e2a312c76ef1ff03029fa5ca4117174df

Formal concept analysis

• is a method mainly used for the analysis of data, i.e. for deriving implicit relationships between objects described through a set of attributes on the one hand and these attributes on the other

Concept lattice of digital evidence

- Building of a concept lattice relates to a notion of Galois connection
- We can build formal concepts, which are the pairs of extents (subsets of objects) and intents (subsets of attributes)

Source: http://www.jaringankita.com/blog/wp-content/uploads/2020/05/SANS_macb-1024x730.png

Association rules of digital evidence **No analysis required** 1 < 176217 > M C B =[100%]=> < 176217 > A; 2 < 453 > M B dir_appdata =[100%]=> < 453 > A;

But what about **"outliers"?**

16 < 176217 > M A C B =[99%]=> < 174787 > dir_other; 25 < 24 > C B dir_user =[96%]=> < 23 > M A; (NTUSER.dat) 31 < 27 > M A C dir_user =[85%]=> < 23 > B;

. . .

Summary

- **Clustering** grouping similar records into clusters
 - <u>Consideration</u>: How does it look in different types of incidents?
- Outliers identification of interesting records
 - <u>Problem</u>: We can't use different types of distance
- **Concept lattices** identification of relevant attributes (set of attributes)
 - <u>Consideration</u>: What if it is done through more cases, are there similarities in relationships?

Conclusion

- Clustering methods, outlier detection and formal concept analysis gave us interesting intermediate data
- Main goals:
 - Finding a suitable set of attributes
 - Finding a suitable method for selecting interesting records
 - Finding or creation of a suitable dataset
- Any insights and thoughts how to continue in our research are welcome ^(C)

Thank you for your attention

E-mail: <u>eva.markova@upjs.sk</u>

28. 3. 2022 18